Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Distributed Optimization for Machine Learning from Decentralized Features (1812.06415v2)

Published 16 Dec 2018 in cs.DC and cs.LG

Abstract: Distributed machine learning has been widely studied in the literature to scale up machine learning model training in the presence of an ever-increasing amount of data. We study distributed machine learning from another perspective, where the information about the training same samples are inherently decentralized and located on different parities. We propose an asynchronous stochastic gradient descent (SGD) algorithm for such a feature distributed machine learning (FDML) problem, to jointly learn from decentralized features, with theoretical convergence guarantees under bounded asynchrony. Our algorithm does not require sharing the original feature data or even local model parameters between parties, thus preserving a high level of data confidentiality. We implement our algorithm for FDML in a parameter server architecture. We compare our system with fully centralized training (which violates data locality requirements) and training only based on local features, through extensive experiments performed on a large amount of data from a real-world application, involving 5 million samples and $8700$ features in total. Experimental results have demonstrated the effectiveness and efficiency of the proposed FDML system.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.