Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Designing a Framework for Solving Multiobjective Simulation Optimization Problems (2304.06881v3)

Published 14 Apr 2023 in math.OC and cs.MS

Abstract: Multiobjective simulation optimization (MOSO) problems are optimization problems with multiple conflicting objectives, where evaluation of at least one of the objectives depends on a black-box numerical code or real-world experiment, which we refer to as a simulation. While an extensive body of research is dedicated to developing new algorithms and methods for solving these and related problems, it is challenging and time consuming to integrate these techniques into real world production-ready solvers. This is partly due to the diversity and complexity of modern state-of-the-art MOSO algorithms and methods and partly due to the complexity and specificity of many real-world problems and their corresponding computing environments. The complexity of this problem is only compounded when introducing potentially complex and/or domain-specific surrogate modeling techniques, problem formulations, design spaces, and data acquisition functions. This paper carefully surveys the current state-of-the-art in MOSO algorithms, techniques, and solvers; as well as problem types and computational environments where MOSO is commonly applied. We then present several key challenges in the design of a Parallel Multiobjective Simulation Optimization framework (ParMOO) and how they have been addressed. Finally, we provide two case studies demonstrating how customized ParMOO solvers can be quickly built and deployed to solve real-world MOSO problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. W. Zhao, R. K. Kapania, Multiobjective optimization of composite flying-wings with SpaRibs and multiple control surfaces, in: Proc. 2018 Multidisciplinary Analysis and Optimization Conference, AIAA, 2018, p. 3424. doi:10.2514/6.2018-3424.
  2. Optimization and supervised machine learning methods for fitting numerical physics models without derivatives, Journal of Physics G: Nuclear and Particle Physics 48 (2020) 024001. doi:10.1088/1361-6471/abd009.
  3. Multiobjective optimization of the variability of the high-performance LINPACK solver, in: Proc. 2020 Winter Simulation Conference (WSC 2020), IEEE, 2020c, pp. 3081–3092. doi:10.1109/WSC48552.2020.9383875.
  4. Comparison of multiobjective optimization methods for the LCLS-II photoinjector, Computer Physics Communication 283 (2023). doi:10.1016/j.cpc.2022.108566.
  5. Tuning hyperparameters without grad students: Scalable and robust Bayesian optimisation with Dragonfly, Journal of Machine Learning Research 21 (2020) 1–27. URL: \urlhttp://jmlr.org/papers/v21/18-223.html.
  6. Bayesian multi-objective hyperparameter optimization for accurate, fast, and efficient neural network accelerator design, Frontiers in Neuroscience 14 (2020) Article No. 667. doi:10.3389/fnins.2020.00667.
  7. Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives, Chemical Engineering Journal 352 (2018) 277–282. doi:10.1016/j.cej.2018.07.031.
  8. Bayesian reaction optimization as a tool for chemical synthesis, Nature 590 (2021) 89–96. doi:10.1038/s41586-021-03213-y.
  9. A multi-objective DIRECT algorithm for ship hull optimization, Computational Optimization and Applications 71 (2018) 53–72. doi:10.1007/s10589-017-9955-0.
  10. The manufacturing data and machine learning platform: Enabling real-time monitoring and control of scientific experiments via IoT, 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) (2020) 1–2. doi:10.1109/WF-IoT48130.2020.9221078.
  11. T. H. Chang, S. M. Wild, ParMOO: A Python library for parallel multiobjective simulation optimization, Journal of Open Source Software 8 (2023b) 4468. doi:10.21105/joss.04468.
  12. Approachability in unknown games: Online learning meets multi-objective optimization, in: Proc. 27th Conference on Learning Theory (PMLR), volume 35 of Proceedings of Machine Learning Research, PMLR, Barcelona, Spain, 2014, pp. 339–355. URL: \urlhttps://proceedings.mlr.press/v35/mannor14.html.
  13. A practical guide to multi-objective reinforcement learning and planning, Autonomous Agents and Multi-Agent Systems 36 (2022) 1–59. doi:10.1007/s10458-022-09552-y.
  14. T. P. Sapsis, A. Blanchard, Optimal criteria and their asymptotic form for data selection in data-driven reduced-order modelling with Gaussian process regression, Philosophical Transactions of the Royal Society A 380 (2022) 20210197. doi:10.1098/rsta.2021.0197.
  15. Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization, Advances in Neural Information Processing Systems 33 (2020) 9851–9864. URL: \urlhttps://proceedings.neurips.cc/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf.
  16. J. Knowles, ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Transactions on Evolutionary Computation 8 (2006) 1341–66. doi:10.1109/tevc.2005.851274.
  17. T. R. Marler, J. S. Arora, Survey of multi-objective optimization methods for engineering, Structural and Multidisciplinary Optimization 26 (2004) 369–395. doi:10.1007/s00158-003-0368-6.
  18. Interactive multiobjective optimization: A review of the state-of-the-art, IEEE Access 6 (2018) 41256–41279. doi:10.1109/ACCESS.2018.2856832.
  19. An introduction to multiobjective simulation optimization, ACM Transactions on Modeling and Computer Simulation 29 (2019) 1–36. doi:10.1145/3299872.
  20. Derivative-free optimization methods, Acta Numerica 28 (2019) 287–404. doi:10.1017/S0962492919000060.
  21. G. Eichfelder, Scalarizations for adaptively solving multi-objective optimization problems, Computational Optimization and Applications 44 (2009) 249–273. doi:10.1007/s10589-007-9155-4.
  22. A. P. Wierzbicki, Reference point approaches, in: T. Gal, T. J. Stewart, T. Hanne (Eds.), Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, Springer US, Boston, MA, 1999, pp. 237–275. doi:10.1007/978-1-4615-5025-9_9.
  23. B. Dandurand, M. M. Wiecek, Quadratic scalarization for decomposed multiobjective optimization, OR Spectrum 38 (2016) 1071–1096. doi:10.1007/s00291-016-0453-z.
  24. K. Bringmann, T. Friedrich, Approximation quality of the hypervolume indicator, Artificial Intelligence 195 (2013) 265–290. doi:10.1016/j.artint.2012.09.005.
  25. A survey on the hypervolume indicator in evolutionary multiobjective optimization, IEEE Transactions on Evolutionary Computation 25 (2020) 1–20. doi:10.1109/TEVC.2020.3013290.
  26. I. Das, J. E. Dennis, Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM Journal on Optimization 8 (1998) 631–657. doi:10.1137/S1052623496307510.
  27. Multiobjective optimization using an adaptive weighting scheme, Optimization Methods and Software 31 (2016) 110–133. doi:10.1080/10556788.2015.1048861.
  28. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method, European Journal of Operational Research 169 (2006) 932–942. doi:10.1016/j.ejor.2004.08.029.
  29. Performance indicators in multiobjective optimization, European Journal of Operational Research 292 (2021) 397–422. doi:10.1016/j.ejor.2020.11.016.
  30. Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm, Journal of Global Optimization 71 (2018) 407–438. doi:10.1007/s10898-018-0609-2.
  31. Algorithm 1028: VTMOP: Solver for blackbox multiobjective optimization problems, ACM Transactions on Mathematical Software 48 (2022) Article No. 36. doi:10.1145/3529258.
  32. J. Müller, SOCEMO: Surrogate optimization of computationally expensive multiobjective problems, INFORMS Journal on Computing 29 (2017) 581–596. doi:10.1287/ijoc.2017.0749.
  33. J. Thomann, G. Eichfelder, A trust-region algorithm for heterogeneous multiobjective optimization, SIAM Journal on Optimization 29 (2019) 1017–1047. doi:10.1137/18m1173277.
  34. A Python surrogate modeling framework with derivatives, Advances in Engineering Software 135 (2019) 102–662. doi:10.1016/j.advengsoft.2019.03.005.
  35. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization, Advances in Neural Information Processing Systems 33 (2020) 21524–21538. URL: \urlhttps://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.
  36. A multicriteria generalization of Bayesian global optimization, in: P. M. Pardalos, A. Zhigljavsky, J. Žilinskas (Eds.), Advances in Stochastic and Deterministic Global Optimization, Springer, 2016, pp. 229–242. doi:10.1007/978-3-319-29975-4.
  37. A Bayesian approach to constrained single- and multi-objective optimization, Journal of Global Optimization 67 (2016) 97–133. doi:10.1007/s10898-016-0427-3.
  38. OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization, Structural and Multidisciplinary Optimization 59 (2019) 1075–1104. doi:10.1007/s00158-019-02211-z.
  39. R. M. Kolonay, M. Sobolewski, Service oriented computing environment (SORCER) for large scale, distributed, dynamic fidelity aeroelastic analysis, in: International Forum on Aeroelasticity and Structural Dynamics (IFASD 2011), Optimization, Citeseer, 2011, pp. 26–30. URL: \urlhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.656.7539.
  40. pyMDO: An object-oriented framework for multidisciplinary design optimization, ACM Transactions on Mathematical Software 36 (2009) Article No. 20. doi:10.1145/1555386.1555389.
  41. Physics-informed machine learning, Nature Reviews Physics 3 (2021) 422–440. doi:10.1038/s42254-021-00314-5.
  42. Smart sampling algorithm for surrogate model development, Computers & Chemical Engineering 96 (2017) 103–114. doi:10.1016/j.compchemeng.2016.10.006.
  43. An adaptive sampling approach for kriging metamodeling by maximizing expected prediction error, Computers & Chemical Engineering, Special Section - ESCAPE-26 106 (2017) 171–182. doi:10.1016/j.compchemeng.2017.05.025.
  44. S. M. Wild, Solving derivative-free nonlinear least squares problems with POUNDERS, in: T. Terlaky, M. F. Anjos, S. Ahmed (Eds.), Advances and Trends in Optimization with Engineering Applications, SIAM, 2017, pp. 529–540. doi:10.1137/1.9781611974683.ch40.
  45. Manifold sampling for optimization of nonconvex functions that are piecewise linear compositions of smooth components, SIAM Journal on Optimization 28 (2018) 3001–3024. doi:10.1137/17m114741x.
  46. J. Blank, K. Deb, pymoo: Multi-objective optimization in Python, IEEE Access 8 (2020) 89497–89509. doi:10.1109/ACCESS.2020.2990567.
  47. S. Le Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM Transactions on Mathematical Software 37 (2011) Article No. 44. doi:10.1145/1916461.1916468.
  48. Pre-exascale accelerated application development: The ORNL Summit experience, IBM Journal of Research and Development 64 (2020) 11:1–11:21. doi:10.1147/JRD.2020.2965881.
  49. T. Louw, S. McIntosh-Smith, Using the Graphcore IPU for traditional HPC applications, in: Proc. 3rd Workshop on Accelerated Machine Learning (AccML), 2021, pp. 1–9. URL: \urlhttps://easychair.org/publications/preprint/ztfj.
  50. Performance portability in the Exascale Computing Project: Exploration through a panel series, Computing in Science & Engineering 23 (2021) 46–54. doi:10.1109/MCSE.2021.3098231.
  51. Toward performance-portable PETSc for GPU-based exascale systems, Parallel Computing 108 (2021) 102831. doi:10.1016/j.parco.2021.102831.
  52. funcX: A federated function serving fabric for science, in: Proc. 29th International Symposium on High-Performance Parallel and Distributed Computing (HPDC ’20), ACM, 2020, pp. 65–76. doi:10.1145/3369583.3392683.
  53. libEnsemble: A library to coordinate the concurrent evaluation of dynamic ensembles of calculations, IEEE Transactions on Parallel and Distributed Systems 33 (2022b) 977–988. doi:10.1109/tpds.2021.3082815.
  54. Managing computationally expensive blackbox multiobjective optimization problems using libEnsemble, in: Proc. 2020 Spring Simulation Conference (SpringSim 2020), the 28th High Performance Computing Symposium (HPC ’20), SCS, 2020b, p. Article No. 31. doi:10.22360/SpringSim.2020.HPC.001.
  55. Global deterministic and stochastic optimization in a service oriented architecture, in: Proc. 2017 Spring Simulation Conference (SpringSim 2017), the 25th High Performance Computing Symposium (HPC ’17), SCS, Virginia Beach, VA, USA, 2017, p. Article No. 7. doi:10.22360/springsim.2017.hpc.023.
  56. Make scientific data FAIR, Nature 570 (2019) 27–29. doi:10.1038/d41586-019-01720-7.
  57. Introducing the FAIR principles for research software, Scientific Data 9 (2022) Article No. 622. doi:10.1038/s41597-022-01710-x.
  58. Algorithm 1027: NOMAD version 4: Nonlinear optimization with the MADS algorithm, ACM Transactions on Mathematical Software 48 (2022). doi:10.1145/3544489.
  59. jMetalPy: A Python framework for multi-objective optimization with metaheuristics, Swarm and Evolutionary Computation 51 (2019) 100598. doi:10.1016/j.swevo.2019.100598.
  60. SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-report 103 (2001). doi:10.3929/ethz-a-004284029.
  61. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002a) 182–197. doi:10.1109/4235.996017.
  62. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum], IEEE Computational Intelligence Magazine 12 (2017) 73–87. doi:10.1109/MCI.2017.2742868.
  63. J. J. Durillo, A. J. Nebro, jMetal: A Java framework for multi-objective optimization, Advances in Engineering Software 42 (2011) 760–771. doi:10.1016/j.advengsoft.2011.05.014.
  64. F. Biscani, D. Izzo, A parallel global multiobjective framework for optimization: pagmo, Journal of Open Source Software 5 (2020) 2338. doi:10.21105/joss.02338.
  65. DEAP: Evolutionary algorithms made easy, Journal of Machine Learning Research 13 (2012) 2171–2175. URL: \urlhttps://www.jmlr.org/papers/v13/fortin12a.html.
  66. Parallel strategies for direct multisearch, Numerical Algorithms 92 (2022) 1757–1788. doi:10.1007/s11075-022-01364-1.
  67. K. Cooper, S. R. Hunter, PyMOSO: Software for multi-objective simulation optimization with R-PERLE and R-MinRLE, INFORMS Journal on Computing 32 (2020) 1101–1108. doi:10.1287/ijoc.2019.0902.
  68. PyTorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems 32 (2019) 1–12. URL: \urlhttps://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
  69. JuMP: A modeling language for mathematical optimization, SIAM Review 59 (2017) 295–320. doi:10.1137/15M1020575.
  70. Scalable global optimization via local bayesian optimization, Advances in Neural Information Processing Systems 32 (2019) 1–12. URL: \urlhttps://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf.
  71. H. Zhang, A. R. Conn, On the local convergence of a derivative-free algorithm for least-squares minimization, Computational Optimization and Applications 51 (2012) 481–507. doi:10.1007/s10589-010-9367-x.
  72. Mordred: a molecular descriptor calculator, Journal of Cheminformatics 10 (2018). doi:10.1186/s13321-018-0258-y.
  73. Google Vizier: A service for black-box optimization, in: Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’17), ACM, 2017, p. 1487–1495. doi:10.1145/3097983.3098043.
  74. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software 23 (1997) 550–560. doi:10.1145/279232.279236.
  75. SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nature Methods 17 (2020) 261–272. doi:10.1038/s41592-019-0686-2.
  76. A framework for fully autonomous design of materials via multiobjective optimization and active learning: challenges and next steps, in: 11th Intl. Conf. on Learning Representation (ICLR 2023), Workshop on Machine Learning for Materials (ML4Materials), 2023c, pp. 1–10. URL: \urlhttps://openreview.net/forum?id=8KJS7RPjMqG, to appear.
  77. Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830. URL: \urlhttps://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube