Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python (2204.05855v1)

Published 12 Apr 2022 in cs.NE

Abstract: Significant effort has been made to solve computationally expensive optimization problems in the past two decades, and various optimization methods incorporating surrogates into optimization have been proposed. However, most optimization toolboxes do not consist of ready-to-run algorithms for computationally expensive problems, especially in combination with other key requirements, such as handling multiple conflicting objectives or constraints. Thus, the lack of appropriate software packages has become a bottleneck for solving real-world applications. The proposed framework, pysamoo, addresses these shortcomings of existing optimization frameworks and provides multiple optimization methods for handling problems involving time-consuming evaluation functions. The framework extends the functionalities of pymoo, a popular and comprehensive toolbox for multi-objective optimization, and incorporates surrogates to support expensive function evaluations. The framework is available under the GNU Affero General Public License (AGPL) and is primarily designed for research purposes. For more information about pysamoo, readers are encouraged to visit: anyoptimization.com/projects/pysamoo.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Julian Blank (5 papers)
  2. Kalyanmoy Deb (42 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.