Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamic priority allocation via restless bandit marginal productivity indices (2304.06115v1)

Published 12 Apr 2023 in math.OC and math.PR

Abstract: This paper surveys recent work by the author on the theoretical and algorithmic aspects of restless bandit indexation as well as on its application to a variety of problems involving the dynamic allocation of priority to multiple stochastic projects. The main aim is to present ideas and methods in an accessible form that can be of use to researchers addressing problems of such a kind. Besides building on the rich literature on bandit problems, our approach draws on ideas from linear programming, economics, and multi-objective optimization. In particular, it was motivated to address issues raised in the seminal work of Whittle (Restless bandits: activity allocation in a changing world. In: Gani J. (ed.) A Celebration of Applied Probability, J. Appl. Probab., vol. 25A, Applied Probability Trust, Sheffield, pp. 287-298, 1988) where he introduced the index for restless bandits that is the starting point of this work. Such an index, along with previously proposed indices and more recent extensions, is shown to be unified through the intuitive concept of ``marginal productivity index'' (MPI), which measures the marginal productivity of work on a project at each of its states. In a multi-project setting, MPI policies are economically sound, as they dynamically allocate higher priority to those projects where work appears to be currently more productive. Besides being tractable and widely applicable, a growing body of computational evidence indicates that such index policies typically achieve a near-optimal performance and substantially outperform benchmark policies derived from conventional approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.