Kac-Moody symmetry in the light front of gauge theories (2304.03211v2)
Abstract: We discuss the emergence of a new symmetry generator in a Hamiltonian realisation of four-dimensional gauge theories in the flat space foliated by retarded (advanced) time. It generates an asymptotic symmetry that acts on the asymptotic fields in a way different from the usual large gauge transformations. The improved canonical generators, corresponding to gauge and asymptotic symmetries, form a classical Kac-Moody charge algebra with a non-trivial central extension. In particular, we describe the case of electromagnetism, where the charge algebra is the $\mathrm{U}(1)$ current algebra with a level proportional to the coupling constant of the theory, $\kappa=4\pi2/e2$. We construct bilinear generators yielding Virasoro algebras on the null boundary. We also provide a non-Abelian generalization of the previous symmetries by analysing the evolution of Yang-Mills theory in Bondi coordinates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.