Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Instance-Level Representation for Large-Scale Multi-Modal Pretraining in E-commerce (2304.02853v1)

Published 6 Apr 2023 in cs.CV

Abstract: This paper aims to establish a generic multi-modal foundation model that has the scalable capability to massive downstream applications in E-commerce. Recently, large-scale vision-language pretraining approaches have achieved remarkable advances in the general domain. However, due to the significant differences between natural and product images, directly applying these frameworks for modeling image-level representations to E-commerce will be inevitably sub-optimal. To this end, we propose an instance-centric multi-modal pretraining paradigm called ECLIP in this work. In detail, we craft a decoder architecture that introduces a set of learnable instance queries to explicitly aggregate instance-level semantics. Moreover, to enable the model to focus on the desired product instance without reliance on expensive manual annotations, two specially configured pretext tasks are further proposed. Pretrained on the 100 million E-commerce-related data, ECLIP successfully extracts more generic, semantic-rich, and robust representations. Extensive experimental results show that, without further fine-tuning, ECLIP surpasses existing methods by a large margin on a broad range of downstream tasks, demonstrating the strong transferability to real-world E-commerce applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Jin (14 papers)
  2. Yongzhi Li (10 papers)
  3. Zehuan Yuan (65 papers)
  4. Yadong Mu (42 papers)
Citations (10)