2000 character limit reached
A family of higher genus complete minimal surfaces that includes the Costa-Hoffman-Meeks one
Published 24 Mar 2023 in math.DG | (2303.13751v2)
Abstract: In this paper, we construct a one-parameter family of minimal surfaces in the Euclidean $3$-space of arbitrarily high genus and with three ends. Each member of this family is immersed, complete and with finite total curvature. Another interesting property is that the symmetry group of the genus $k$ surfaces $\Sigma_{k,x}$ is the dihedral group with $4(k+1)$ elements. Moreover, in particular, for $|x|=1$ we find the family of the Costa-Hoffman-Meeks embedded minimal surfaces, which have two catenoidal ends and a middle flat end.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.