Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Traffic Volume Prediction using Memory-Based Recurrent Neural Networks: A comparative analysis of LSTM and GRU (2303.12643v1)

Published 22 Mar 2023 in cs.LG

Abstract: Predicting traffic volume in real-time can improve both traffic flow and road safety. A precise traffic volume forecast helps alert drivers to the flow of traffic along their preferred routes, preventing potential deadlock situations. Existing parametric models cannot reliably forecast traffic volume in dynamic and complex traffic conditions. Therefore, in order to evaluate and forecast the traffic volume for every given time step in a real-time manner, we develop non-linear memory-based deep neural network models. Our extensive experiments run on the Metro Interstate Traffic Volume dataset demonstrate the effectiveness of the proposed models in predicting traffic volume in highly dynamic and heterogeneous traffic environments.

Summary

We haven't generated a summary for this paper yet.