Papers
Topics
Authors
Recent
Search
2000 character limit reached

High-Dimensional Approximate Nearest Neighbor Search: with Reliable and Efficient Distance Comparison Operations

Published 17 Mar 2023 in cs.DS, cs.DB, and cs.IR | (2303.09855v1)

Abstract: Approximate K nearest neighbor (AKNN) search is a fundamental and challenging problem. We observe that in high-dimensional space, the time consumption of nearly all AKNN algorithms is dominated by that of the distance comparison operations (DCOs). For each operation, it scans full dimensions of an object and thus, runs in linear time wrt the dimensionality. To speed it up, we propose a randomized algorithm named ADSampling which runs in logarithmic time wrt to the dimensionality for the majority of DCOs and succeeds with high probability. In addition, based on ADSampling we develop one general and two algorithm-specific techniques as plugins to enhance existing AKNN algorithms. Both theoretical and empirical studies confirm that: (1) our techniques introduce nearly no accuracy loss and (2) they consistently improve the efficiency.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.