Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
64 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
227 tokens/sec
2000 character limit reached

CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion (2406.19651v1)

Published 28 Jun 2024 in cs.DB and cs.AI

Abstract: Approximate K Nearest Neighbor (AKNN) algorithms play a pivotal role in various AI applications, including information retrieval, computer vision, and natural language processing. Although numerous AKNN algorithms and benchmarks have been developed recently to evaluate their effectiveness, the dynamic nature of real-world data presents significant challenges that existing benchmarks fail to address. Traditional benchmarks primarily assess retrieval effectiveness in static contexts and often overlook update efficiency, which is crucial for handling continuous data ingestion. This limitation results in an incomplete assessment of an AKNN algorithms ability to adapt to changing data patterns, thereby restricting insights into their performance in dynamic environments. To address these gaps, we introduce CANDY, a benchmark tailored for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion. CANDY comprehensively assesses a wide range of AKNN algorithms, integrating advanced optimizations such as machine learning-driven inference to supplant traditional heuristic scans, and improved distance computation methods to reduce computational overhead. Our extensive evaluations across diverse datasets demonstrate that simpler AKNN baselines often surpass more complex alternatives in terms of recall and latency. These findings challenge established beliefs about the necessity of algorithmic complexity for high performance. Furthermore, our results underscore existing challenges and illuminate future research opportunities. We have made the datasets and implementation methods available at: https://github.com/intellistream/candy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub