Papers
Topics
Authors
Recent
Search
2000 character limit reached

Comparison theorems for invariant measures of random dynamical systems

Published 17 Mar 2023 in math.DS | (2303.09784v1)

Abstract: We study a random dynamical system such that one transformation is randomly selected from a family of transformations and then applied on each iteration. For such random dynamical systems, we consider estimates of absolutely continuous invariant measures. Since the random dynamical systems are made by complicated compositions of many deterministic maps and probability density functions, it is difficult to estimate the invariant measures. To get rid of this difficulty, we present fundamental comparison theorems which make easier the estimates of invariant measures of random maps. We also demonstrate how to apply the comparison theorems to random maps with indifferent fixed points and/or with unbounded derivatives.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.