Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Monomial projections of Veronese varieties: new results and conjectures (2303.09582v1)

Published 16 Mar 2023 in math.AG and math.AC

Abstract: In this paper, we consider the homogeneous coordinate rings $A(Y_{n,d}) \cong \mathbb{K}[\Omega_{n,d}]$ of monomial projections $Y_{n,d}$ of Veronese varieties parameterized by subsets $\Omega_{n,d}$ of monomials of degree $d$ in $n+1$ variables where: (1) $\Omega_{n,d}$ contains all monomials supported in at most $s$ variables and, (2) $\Omega_{n,d}$ is a set of monomial invariants of a finite diagonal abelian group $G \subset GL(n+1,\mathbb{K})$ of order $d$. Our goal is to study when $\mathbb{K}[\Omega_{n,d}]$ is a quadratic algebra and, if so, when $\mathbb{K}[\Omega_{n,d}]$ is Koszul or G-quadratic. For the family (1), we prove that $\mathbb{K}[\Omega_{n,d}]$ is quadratic when $s \ge \lceil \frac{n+2}{2} \rceil$. For the family (2), we completely characterize when $\mathbb{K}[\Omega_{2,d}]$ is quadratic in terms of the group $G \subset GL(3,\mathbb{K})$, and we prove that $\mathbb{K}[\Omega_{2,d}]$ is quadratic if and only if it is Koszul. We also provide large families of examples where $\mathbb{K}[\Omega_{n,d}]$ is G-quadratic.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.