$(d,\textbfσ)$-Veronese variety and some applications (2107.07366v3)
Abstract: Let $\mathbb{K}$ be the Galois field $\mathbb{F}{qt}$ of order $qt, q=pe, p$ a prime, $A=\mathrm{Aut}(\mathbb{K})$ be the automorphism group of $\mathbb{K}$ and $\boldsymbol{\sigma}=(\sigma_0,\ldots, \sigma{d-1}) \in Ad$, $d \geq 1$. In this paper the following generalization of the Veronese map is studied: $$ \nu_{d,\boldsymbol{\sigma}} : \langle v\rangle \in \mathrm{PG}(n-1,\mathbb{K}) \longrightarrow \langle v{\sigma_0} \otimes v{\sigma_1} \otimes \cdots \otimes v{\sigma_{d-1}}\rangle \in \mathrm{PG} (nd-1,\mathbb{K} ). $$ Its image will be called the $(d,\boldsymbol{\sigma})$-$Veronese$ $variety$ $\mathcal{V}{d,\boldsymbol{\sigma}}$. Here, we will show that $\mathcal{V}{d,\boldsymbol{\sigma}}$ is the Grassmann embedding of a normal rational scroll and any $d+1$ points of it are linearly independent. We give a characterization of $d+2$ linearly dependent points of $\mathcal{V}{d,\boldsymbol{\sigma}}$ and for some choices of parameters, $\mathcal{V}{p,\boldsymbol{\sigma}}$ is the normal rational curve; for $p=2$, it can be the Segre's arc of $\mathrm{PG}(3,qt)$; for $p=3$ $\mathcal{V}{p,\boldsymbol{\sigma}}$ can be also a $|\mathcal{V}{p,\boldsymbol{\sigma}}|$-track of $\mathrm{PG}(5,qt)$. Finally, investigate the link between such points sets and a linear code $\mathcal{C}_{d,\boldsymbol{\sigma}}$ that can be associated to the variety, obtaining examples of MDS and almost MDS codes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.