Papers
Topics
Authors
Recent
2000 character limit reached

Smoothed Q-learning (2303.08631v1)

Published 15 Mar 2023 in cs.LG

Abstract: In Reinforcement Learning the Q-learning algorithm provably converges to the optimal solution. However, as others have demonstrated, Q-learning can also overestimate the values and thereby spend too long exploring unhelpful states. Double Q-learning is a provably convergent alternative that mitigates some of the overestimation issues, though sometimes at the expense of slower convergence. We introduce an alternative algorithm that replaces the max operation with an average, resulting also in a provably convergent off-policy algorithm which can mitigate overestimation yet retain similar convergence as standard Q-learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.