Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross Learning in Deep Q-Networks (2009.13780v1)

Published 29 Sep 2020 in cs.AI

Abstract: In this work, we propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods, particularly in the deep Q-networks where the overestimation is exaggerated by function approximation errors. Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network, which leads to reduced overestimation bias as well as the variance. We provide empirical evidence on the advantages of our method by evaluating on some benchmark environment, the experimental results demonstrate significant improvement of performance in reducing the overestimation bias and stabilizing the training, further leading to better derived policies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xing Wang (191 papers)
  2. Alexander Vinel (6 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.