The Relative Manin-Mumford Conjecture (2303.05045v2)
Abstract: We prove the Relative Manin-Mumford Conjecture for families of abelian varieties in characteristic 0. We follow the Pila-Zannier method to study special point problems, and we use the Betti map which goes back to work of Masser and Zannier in the case of curves. The key new ingredients compared to previous applications of this approach are a height inequality proved by both authors of the current paper and Dimitrov, and the first-named author's study of certain degeneracy loci in subvarieties of abelian schemes. We also strengthen this result and prove a criterion for torsion points to be dense in a subvariety of an abelian scheme over $\mathbb{C}$. The Uniform Manin-Mumford Conjecture for curves embedded in their Jacobians was first proved by K\"{u}hne. We give a new proof, as a corollary to our main theorem, that does not use equidistribution.
- The Betti map associated to a section of an abelian scheme (with an appendix by Z. Gao). Inv. Math., 222:161–202, 2020.
- F. Barroero and G. Dill. Distinguished categories and the Zilber-Pink conjecture. preprint arXiv:2103.07422, 2021.
- F. Barroero and G. Dill. On the Zilber–Pink conjecture for complex abelian varieties. Ann. Sci. École Norm. Sup., 55(1):261–282, 2022.
- On unlikely intersections of complex varieties with tori. Acta Arith., 133(4):309–323, 2008.
- M. Baker and B. Poonen. Torsion packets on curves. Compositio Math., 127(1):109–116, 2001.
- Torsion hypersurfaces on abelian schemes and Betti coordinates. Mathematische Annalen, 371(3):1013–1045, 2018.
- Finite Orbits in Surfaces with a Double Elliptic Fibration and Torsion Values of Sections. preprint arXiv:2302.00859, 2023.
- S. David. Minorations de hauteurs sur les variétés abéliennes. Bulletin de la Société Mathématique de France, 121(4):509–544, 1993.
- Uniformity in Mordell–Lang for curves. Annals of Mathematics, 194(1):237–298, 2021.
- A consequence of the relative Bogomolov conjecture. Journal of Number Theory (Prime), Proceedings of the First JNT Biennial Conference 2019, 230:146–160, 2022.
- Uniform Manin-Mumford for a family of genus 2222 curves. Ann. of Math., 191:949–1001, 2020.
- S. David and P. Philippon. Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes. II. Comment. Math. Helv., 77(4):639–700, 2002.
- S. Eterović and T. Scanlon. Likely intersections. arXiv: 2211.10592, 2022.
- G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math., 73:349–366, 1983.
- G. Faltings and C.-L. Chai. Degeneration of abelian varieties, volume 22 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1990. With an appendix by David Mumford.
- Z. Gao. Generic rank of Betti map and unlikely intersections. Compos. Math., 156(12):2469–2509, 2020.
- Z. Gao. Mixed Ax-Schanuel for the universal abelian varieties and some applications. Compos. Math., 156(11):2263–2297, 2020.
- Z. Gao. Distribution of points on varieties: various aspects and interactions. HDR (Habilitation à Diriger des Recherches), Sorbonne Université, 2021.
- Z. Gao and P. Habegger. Degeneracy Loci in the Universal Family of Abelian Varieties. preprint, 2023.
- A. Genestier and B.C. Ngô. Lecture on Shimura varieties. https://www.math.uchicago.edu/ ngo/Shimura.pdf, 2006.
- É. Gaudron and G. Rémond. Polarisations et isogénies. Duke Math. J., 163(11):2057 – 2108, 2014.
- É. Gaudron and G. Rémond. Théorème des périodes et degrés minimaux d’isogénies. Comment. Math. Helv., 89(2):343–403, 2014.
- E. Gaurdon and G. Rémond. Nombre de petits points sur une variété abélienne. the authors’ webpage, 2022.
- P. Habegger. Torsion points on elliptic curves in Weierstrass form. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12(3):687–715, 2013.
- P. Habegger and J. Pila. O-minimality and certain atypical intersections. Ann. Sci. École Norm. Sup., 49:813–858, 2016.
- L. Kühne. Equidistribution in families of abelian varieties and uniformity. arXiv: 2101.10272, 2021.
- L. Kühne. The relative Bogomolov conjecture for fibered products of elliptic curves. J.Reine Angew. Math (Crelle), 2023:243–270, 2023.
- D. W. Masser. Small values of the quadratic part of the Néron-Tate height on an abelian variety. Compositio Math., 53(2):153–170, 1984.
- D. Masser. Specializations of finitely generated subgroups of abelian varieties. Trans. Amer. Math. Soc., 311(1):413–424, 1989.
- D.W. Masser and G. Wüstholz. Isogeny Estimates for Abelian Varieties, and Finiteness Theorems. Ann. of Math. (2), 137(3):459–472, 1993.
- D.W. Masser and U. Zannier. Torsion anomalous points and families of elliptic curves. Comptes Rendus Mathematique, 346(9):491–494, 2008.
- D. Masser and U. Zannier. Torsion points on families of squares of elliptic curves. Mathematische Annalen, 352(2):453–484, 2012.
- D. Masser and U. Zannier. Torsion points on families of products of elliptic curves. Advances in Mathematics, 259:116 – 133, 2014.
- D. Masser and U. Zannier. Torsion points on families of simple abelian surfaces and Pell’s equation over polynomial rings (with an appendix by E. V. Flynn). Journal of the European Mathematical Society, 17:2379–2416, 2015.
- D. Masser and U. Zannier. Torsion points, Pell’s equation, and integration in elementary terms. Acta Mathematica, 225(2):227–312, 2020.
- F. Pazuki. Theta height and Faltings height. Bull. Soc. Math. France, 140(1):19–49, 2012.
- R. Pink. A Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang. Preprint, page 13pp, 2005.
- Y. Peterzil and S. Starchenko. Definability of restricted theta functions and families of abelian varieties. Duke Math. J., 162(4):731–765, 2013.
- J. Pila and U. Zannier. Rational points in periodic analytic sets and the Manin-Mumford conjecture. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19(2):149–162, 2008.
- G. Rémond. Conjectures uniformes sur les variétés abéliennes. The Quarterly Journal of Mathematics, 69(2):459–486, 2018.
- A. Silverberg. Fields of definition for homomorphisms of abelian varieties. J. Pure Appl. Algebra, 77(3):253–262, 1992.
- M. Stoll. Simultaneous torsion in the Legendre family. Exp. Math., 26(4):446–459, 2017.
- M. Stoll. Uniform bounds for the number of rational points on hyperelliptic curves of small mordell-weil rank. J. Eur. Math. Soc. (JEMS), 21:923–956, 2019.
- L. van den Dries and C. Miller. On the real exponential field with restricted analytic functions. Israel J. Math., 85(1-3):19–56, 1994.
- A.J. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Amer. Math. Soc., 9(4):1051–1094, 1996.
- X. Yuan. Arithmetic bigness and a uniform Bogomolov-type result. arXiv: 2108.05625, 2021.
- X. Yuan and S. Zhang. Adelic line bundles over quasi-projective varieties. arXiv: 2105.13587, 2021.
- U. Zannier. Some problems of unlikely intersections in arithmetic and geometry, volume 181 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2012. With appendixes by David Masser.
- S Zhang. Small points and Arakelov theory. In Proceedings of the International Congress of Mathematicians. Volume II, pages 217–225, 1998.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.