Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Sensitivity analysis for principal ignorability violation in estimating complier and noncomplier average causal effects (2303.05032v4)

Published 9 Mar 2023 in stat.ME

Abstract: An important strategy for identifying principal causal effects, which are often used in settings with noncompliance, is to invoke the principal ignorability (PI) assumption. As PI is untestable, it is important to gauge how sensitive effect estimates are to its violation. We focus on this task for the common one-sided noncompliance setting where there are two principal strata, compliers and noncompliers. Under PI, compliers and noncompliers share the same outcome-mean-given-covariates function under the control condition. For sensitivity analysis, we allow this function to differ between compliers and noncompliers in several ways, indexed by an odds ratio, a generalized odds ratio, a mean ratio, or a standardized mean difference sensitivity parameter. We tailor sensitivity analysis techniques (with any sensitivity parameter choice) to several types of PI-based main analysis methods, including outcome regression, influence function (IF) based and weighting methods. We illustrate the proposed sensitivity analyses using several outcome types from the JOBS II study. This application estimates nuisance functions parametrically -- for simplicity and accessibility. In addition, we establish rate conditions on nonparametric nuisance estimation for IF-based estimators to be asymptotically normal -- with a view to inform nonparametric inference.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.