Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining both Commonality and Specificity from Multiple Documents for Multi-Document Summarization (2303.02677v1)

Published 5 Mar 2023 in cs.CL and cs.AI

Abstract: The multi-document summarization task requires the designed summarizer to generate a short text that covers the important information of original documents and satisfies content diversity. This paper proposes a multi-document summarization approach based on hierarchical clustering of documents. It utilizes the constructed class tree of documents to extract both the sentences reflecting the commonality of all documents and the sentences reflecting the specificity of some subclasses of these documents for generating a summary, so as to satisfy the coverage and diversity requirements of multi-document summarization. Comparative experiments with different variant approaches on DUC'2002-2004 datasets prove the effectiveness of mining both the commonality and specificity of documents for multi-document summarization. Experiments on DUC'2004 and Multi-News datasets show that our approach achieves competitive performance compared to the state-of-the-art unsupervised and supervised approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Bing Ma (17 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.