Papers
Topics
Authors
Recent
Search
2000 character limit reached

How To Guide Your Learner: Imitation Learning with Active Adaptive Expert Involvement

Published 3 Mar 2023 in cs.LG | (2303.02073v1)

Abstract: Imitation learning aims to mimic the behavior of experts without explicit reward signals. Passive imitation learning methods which use static expert datasets typically suffer from compounding error, low sample efficiency, and high hyper-parameter sensitivity. In contrast, active imitation learning methods solicit expert interventions to address the limitations. However, recent active imitation learning methods are designed based on human intuitions or empirical experience without theoretical guarantee. In this paper, we propose a novel active imitation learning framework based on a teacher-student interaction model, in which the teacher's goal is to identify the best teaching behavior and actively affect the student's learning process. By solving the optimization objective of this framework, we propose a practical implementation, naming it AdapMen. Theoretical analysis shows that AdapMen can improve the error bound and avoid compounding error under mild conditions. Experiments on the MetaDrive benchmark and Atari 2600 games validate our theoretical analysis and show that our method achieves near-expert performance with much less expert involvement and total sampling steps than previous methods. The code is available at https://github.com/liuxhym/AdapMen.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.