Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RILe: Reinforced Imitation Learning (2406.08472v2)

Published 12 Jun 2024 in cs.LG and cs.AI

Abstract: Reinforcement Learning has achieved significant success in generating complex behavior but often requires extensive reward function engineering. Adversarial variants of Imitation Learning and Inverse Reinforcement Learning offer an alternative by learning policies from expert demonstrations via a discriminator. However, these methods struggle in complex tasks where randomly sampling expert-like behaviors is challenging. This limitation stems from their reliance on policy-agnostic discriminators, which provide insufficient guidance for agent improvement, especially as task complexity increases and expert behavior becomes more distinct. We introduce RILe (Reinforced Imitation Learning environment), a novel trainer-student system that learns a dynamic reward function based on the student's performance and alignment with expert demonstrations. In RILe, the student learns an action policy while the trainer, using reinforcement learning, continuously updates itself via the discriminator's feedback to optimize the alignment between the student and the expert. The trainer optimizes for long-term cumulative rewards from the discriminator, enabling it to provide nuanced feedback that accounts for the complexity of the task and the student's current capabilities. This approach allows for greater exploration of agent actions by providing graduated feedback rather than binary expert/non-expert classifications. By reducing dependence on policy-agnostic discriminators, RILe enables better performance in complex settings where traditional methods falter, outperforming existing methods by 2x in complex simulated robot-locomotion tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Mert Albaba (4 papers)
  2. Sammy Christen (21 papers)
  3. Christoph Gebhardt (11 papers)
  4. Thomas Langarek (1 paper)
  5. Michael J. Black (163 papers)
  6. Otmar Hilliges (120 papers)

Summary

We haven't generated a summary for this paper yet.