Papers
Topics
Authors
Recent
Search
2000 character limit reached

Predicting Motion Plans for Articulating Everyday Objects

Published 2 Mar 2023 in cs.RO, cs.AI, cs.CV, and cs.LG | (2303.01484v1)

Abstract: Mobile manipulation tasks such as opening a door, pulling open a drawer, or lifting a toilet lid require constrained motion of the end-effector under environmental and task constraints. This, coupled with partial information in novel environments, makes it challenging to employ classical motion planning approaches at test time. Our key insight is to cast it as a learning problem to leverage past experience of solving similar planning problems to directly predict motion plans for mobile manipulation tasks in novel situations at test time. To enable this, we develop a simulator, ArtObjSim, that simulates articulated objects placed in real scenes. We then introduce SeqIK+$\theta_0$, a fast and flexible representation for motion plans. Finally, we learn models that use SeqIK+$\theta_0$ to quickly predict motion plans for articulating novel objects at test time. Experimental evaluation shows improved speed and accuracy at generating motion plans than pure search-based methods and pure learning methods.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.