Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 TPS
Gemini 2.5 Pro 37 TPS Pro
GPT-5 Medium 38 TPS
GPT-5 High 27 TPS Pro
GPT-4o 90 TPS
GPT OSS 120B 467 TPS Pro
Kimi K2 139 TPS Pro
2000 character limit reached

Task-Specific Context Decoupling for Object Detection (2303.01047v1)

Published 2 Mar 2023 in cs.CV

Abstract: Classification and localization are two main sub-tasks in object detection. Nonetheless, these two tasks have inconsistent preferences for feature context, i.e., localization expects more boundary-aware features to accurately regress the bounding box, while more semantic context is preferred for object classification. Exsiting methods usually leverage disentangled heads to learn different feature context for each task. However, the heads are still applied on the same input features, which leads to an imperfect balance between classifcation and localization. In this work, we propose a novel Task-Specific COntext DEcoupling (TSCODE) head which further disentangles the feature encoding for two tasks. For classification, we generate spatially-coarse but semantically-strong feature encoding. For localization, we provide high-resolution feature map containing more edge information to better regress object boundaries. TSCODE is plug-and-play and can be easily incorperated into existing detection pipelines. Extensive experiments demonstrate that our method stably improves different detectors by over 1.0 AP with less computational cost. Our code and models will be publicly released.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube