Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Hilbert Irreducibility Theorem for integral points of del Pezzo surfaces (2303.00099v2)

Published 28 Feb 2023 in math.AG and math.NT

Abstract: We prove that the integral points are potentially Zariski dense in the complement of a reduced effective singular anticanonical divisor in a smooth del Pezzo surface, with the exception of $\mathbb{P}2$ minus three concurrent lines (for which potential density does not hold). This answers positively a question raised by Hassett and Tschinkel and, combined with previous results, completes the proof of the potential density of integral points for complements of anticanonical divisors in smooth del Pezzo surfaces. We then classify the complements which are simply connected and for these we prove that the set of integral points is potentially not thin, as predicted by a conjecture of Corvaja and Zannier.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube