Density of rational points on del Pezzo surfaces of degree one (1212.2364v2)
Abstract: We state conditions under which the set S(k) of k-rational points on a del Pezzo surface S of degree 1 over an infinite field k of characteristic not equal to 2 or 3 is Zariski dense. For example, it suffices to require that the elliptic fibration over the projective line induced by the anticanonical map has a nodal fiber over a k-rational point. It also suffices to require the existence of a point in S(k) that does not lie on six exceptional curves of S and that has order 3 on its fiber of the elliptic fibration. This allows us to show that within a parameter space for del Pezzo surfaces of degree 1 over the field of real numbers, the set of surfaces S defined over the field Q of rational numbers for which the set S(Q) is Zariski dense, is dense with respect to the real analytic topology. We also include conditions that may be satisfied for every del Pezzo surface S and that can be verified with a finite computation for any del Pezzo surface S that does satisfy them.