A generalized conditional gradient method for multiobjective composite optimization problems (2302.12912v1)
Abstract: This article deals with multiobjective composite optimization problems that consist of simultaneously minimizing several objective functions, each of which is composed of a combination of smooth and non-smooth functions. To tackle these problems, we propose a generalized version of the conditional gradient method, also known as Frank-Wolfe method. The method is analyzed with three step size strategies, including Armijo-type, adaptive, and diminishing step sizes. We establish asymptotic convergence properties and iteration-complexity bounds, with and without convexity assumptions on the objective functions. Numerical experiments illustrating the practical behavior of the methods are presented.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.