Infinitely many Brake orbits of Tonelli Hamiltonian systems on the cotangent bundle
Abstract: We prove that on the twisted cotangent bundle of a closed manifold with an exact magnetic form, a Hamiltonian system of a time-dependent Tonelli Hamiltonian function possesses infinitely many brake orbits. More precisely, by applying Legendre transform we show that there are infinitely many symmetric orbits of the dual Euler-Lagrange system on the configuration space. This result contains an assertion for the existence of infinitely many symmetric orbits of Tonelli Euler-Lagrange systems given by G. Lu at the end of [Lu09a, Remark 6.1]. In this paper, we will present a complete proof of this assertion.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.