Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

An optimization-based approach to automated design (2302.08428v1)

Published 16 Feb 2023 in math.OC and math.DS

Abstract: We propose a model-based, automated, bottom-up approach for design, which is applicable to various physical domains, but in this work we focus on the electrical domain. This bottom-up approach is based on a meta-topology in which each link is described by a universal component that can be instantiated as basic components (e.g., resistors, capacitors) or combinations of basic components via discrete switches. To address the combinatorial explosion often present in mixed-integer optimization problems, we present two algorithms. In the first algorithm, we convert the discrete switches into continuous switches that are physically realizable and formulate a parameter optimization problem that learns the component and switch parameters while inducing design sparsity through an $L_1$ regularization term. The second algorithm uses a genetic-like approach with selection and mutation steps guided by ranking of requirements costs, combined with continuous optimization for generating optimal parameters. We improve the time complexity of the optimization problem in both algorithms by reconstructing the model when components become redundant and by simplifying topologies through collapsing components and removing disconnected ones. To demonstrate the efficacy of these algorithms, we apply them to the design of various electrical circuits.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.