Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Subsampling Bootstrap for Massive Data (2302.07533v1)

Published 15 Feb 2023 in stat.ME

Abstract: The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla version of bootstrap is no longer feasible computationally for many modern massive datasets due to the need to repeatedly resample the entire data. Therefore, several improvements to the bootstrap method have been made in recent years, which assess the quality of estimators by subsampling the full dataset before resampling the subsamples. Naturally, the performance of these modern subsampling methods is influenced by tuning parameters such as the size of subsamples, the number of subsamples, and the number of resamples per subsample. In this paper, we develop a novel hyperparameter selection methodology for selecting these tuning parameters. Formulated as an optimization problem to find the optimal value of some measure of accuracy of an estimator subject to computational cost, our framework provides closed-form solutions for the optimal hyperparameter values for subsampled bootstrap, subsampled double bootstrap and bag of little bootstraps, at no or little extra time cost. Using the mean square errors as a proxy of the accuracy measure, we apply our methodology to study, compare and improve the performance of these modern versions of bootstrap developed for massive data through simulation study. The results are promising.

Citations (3)

Summary

We haven't generated a summary for this paper yet.