Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Versatile User Identification in Extended Reality using Pretrained Similarity-Learning (2302.07517v6)

Published 15 Feb 2023 in cs.HC and cs.LG

Abstract: Various machine learning approaches have proven to be useful for user verification and identification based on motion data in eXtended Reality (XR). However, their real-world application still faces significant challenges concerning versatility, i.e., in terms of extensibility and generalization capability. This article presents a solution that is both extensible to new users without expensive retraining, and that generalizes well across different sessions, devices, and user tasks. To this end, we developed a similarity-learning model and pretrained it on the "Who Is Alyx?" dataset. This dataset features a wide array of tasks and hence motions from users playing the VR game "Half-Life: Alyx". In contrast to previous works, we used a dedicated set of users for model validation and final evaluation. Furthermore, we extended this evaluation using an independent dataset that features completely different users, tasks, and three different XR devices. In comparison with a traditional classification-learning baseline, our model shows superior performance, especially in scenarios with limited enroLLMent data. The pretraining process allows immediate deployment in a diverse range of XR applications while maintaining high versatility. Looking ahead, our approach paves the way for easy integration of pretrained motion-based identification models in production XR systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. J. Lin, J. Cronjé, C. Wienrich, P. Pauli, and M. E. Latoschik, “Visual indicators representing avatars’ authenticity in social virtual reality and their impacts on perceived trustworthiness,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 11, pp. 4589–4599, 2023.
  2. H. J. Smith and M. Neff, “Communication behavior in embodied virtual reality,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12, 2018.
  3. M. E. Latoschik, F. Kern, J.-P. Stauffert, A. Bartl, M. Botsch, and J.-L. Lugrin, “Not Alone Here?! Scalability and User Experience of Embodied Ambient Crowds in Distributed Social Virtual Reality,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, pp. 2134–2144, May 2019.
  4. M. E. Latoschik, D. Roth, D. Gall, J. Achenbach, T. Waltemate, and M. Botsch, “The effect of avatar realism in immersive social virtual realities,” in 23rd ACM Symposium on Virtual Reality Software and Technology (VRST), pp. 39:1–39:10, 2017.
  5. J. Lin and M. E. Latoschik, “Digital body, identity and privacy in social virtual reality: A systematic review,” Frontiers in Virtual Reality, 2022.
  6. J. Achenbach, T. Waltemate, M. E. Latoschik, and M. Botsch, “Fast generation of realistic virtual humans,” in 23rd ACM Symposium on Virtual Reality Software and Technology (VRST), pp. 12:1–12:10, 2017.
  7. S. Wenninger, J. Achenbach, A. Bartl, M. E. Latoschik, and M. Botsch, “Realistic virtual humans from smartphone videos.,” in VRST (R. J. Teather, C. Joslin, W. Stuerzlinger, P. Figueroa, Y. Hu, A. U. Batmaz, W. Lee, and F. Ortega, eds.), pp. 29:1–29:11, ACM, 2020.
  8. A. Bartl, S. Wenninger, E. Wolf, M. Botsch, and M. E. Latoschik, “Affordable but not cheap: A case study of the effects of two 3d-reconstruction methods of virtual humans,” Frontiers in Virtual Reality, 2021.
  9. A. Kupin, B. Moeller, Y. Jiang, N. K. Banerjee, and S. Banerjee, “Task-driven biometric authentication of users in virtual reality (VR) environments,” in MultiMedia Modeling (I. Kompatsiaris, B. Huet, V. Mezaris, C. Gurrin, W.-H. Cheng, and S. Vrochidis, eds.), (Cham), pp. 55–67, Springer International Publishing, 2019.
  10. S. Li, A. Ashok, Y. Zhang, C. Xu, J. Lindqvist, and M. Gruteser, “Whose move is it anyway? Authenticating smart wearable devices using unique head movement patterns,” 2016 IEEE International Conference on Pervasive Computing and Communications, PerCom 2016, pp. 1–9, 2016.
  11. J. Liebers and S. Schneegass, “Gaze-based Authentication in Virtual Reality,” Eye Tracking Research and Applications Symposium (ETRA), pp. 2019–2020, 2020.
  12. J. Liebers, M. Abdelaziz, and L. Mecke, “Understanding user identification in virtual reality through behavioral biometrics and the effect of body normalization,” in Conference on Human Factors in Computing Systems - Proceedings, (New York, NY, USA), pp. 1–11, Association for Computing Machinery, May 2021.
  13. J. Liebers, S. Brockel, U. Gruenefeld, and S. Schneegass, “Identifying Users by Their Hand Tracking Data in Augmented and Virtual Reality,” International Journal of Human–Computer Interaction, pp. 1–16, Oct. 2022.
  14. F. Mathis, H. I. Fawaz, and M. Khamis, “Knowledge-driven biometric authentication in virtual reality,” in Conference on Human Factors in Computing Systems - Proceedings, (New York, NY, USA), Association for Computing Machinery, 2020.
  15. R. Miller, A. Ajit, N. K. Banerjee, and S. Banerjee, “Realtime Behavior-Based Continual Authentication of Users in Virtual Reality Environments,” in 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 253–2531, IEEE, Dec. 2019.
  16. R. Miller, N. K. Banerjee, and S. Banerjee, “Within-System and Cross-System Behavior-Based Biometric Authentication in Virtual Reality,” Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VRW 2020, pp. 311–316, 2020.
  17. M. R. Miller, F. Herrera, H. Jun, J. A. Landay, and J. N. Bailenson, “Personal identifiability of user tracking data during observation of 360-degree VR video,” Scientific Reports, vol. 10, no. 1, pp. 1–10, 2020.
  18. R. Miller, N. K. Banerjee, and S. Banerjee, “Using Siamese Neural Networks to Perform Cross-System Behavioral Authentication in Virtual Reality,” in 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pp. 140–149, IEEE, Mar. 2021.
  19. R. Miller, N. K. Banerjee, and S. Banerjee, “Combining Real-World Constraints on User Behavior with Deep Neural Networks for Virtual Reality (VR) Biometrics,” in Proceedings - 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2022, pp. 409–418, Institute of Electrical and Electronics Engineers Inc., 2022.
  20. R. Miller, N. K. Banerjee, and S. Banerjee, “Temporal Effects in Motion Behavior for Virtual Reality (VR) Biometrics,” in Proceedings - 2022 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2022, pp. 563–572, Institute of Electrical and Electronics Engineers Inc., 2022.
  21. A. G. Moore, R. P. McMahan, H. Dong, and N. Ruozzi, “Personal Identifiability of User Tracking Data During VR Training,” in 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 556–557, IEEE, 2021.
  22. B. C. Munsell, A. Temlyakov, C. Qu, and S. Wang, “Person identification using full-body motion and anthropometric biometrics from kinect videos,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7585 LNCS, no. PART 3, pp. 91–100, 2012.
  23. D. P. Nguyen, C. B. Phan, and S. Koo, “Predicting body movements for person identification under different walking conditions,” Forensic Science International, vol. 290, pp. 303–309, 2018.
  24. K. Pfeuffer, M. J. Geiger, S. Prange, L. Mecke, D. Buschek, and F. Alt, “Behavioural Biometrics in VR: Identifying People from Body Motion and Relations in Virtual Reality,” in 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19, vol. 12, (New York, NY, USA), pp. 1–12, Association for Computing Machinery, 2019.
  25. C. E. Rogers, A. W. Witt, A. D. Solomon, and K. K. Venkatasubramanian, “An approach for user identification for head-mounted displays,” ISWC 2015 - Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 143–146, 2015.
  26. C. Rack, A. Hotho, and M. E. Latoschik, “Comparison of Data Encodings and Machine Learning Architectures for User Identification on Arbitrary Motion Sequences,” in 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality, AIVR 2022, IEEE, 2022.
  27. A. G. Moore, T. D. Do, N. Ruozzi, and R. P. McMahan, “Identifying virtual reality users across domain-specific tasks: A systematic investigation of tracked features for assembly,” in 2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 396–404, 2023.
  28. J. Liebers, C. Burschik, U. Gruenefeld, and S. Schneegass, “Exploring the stability of behavioral biometrics in virtual reality in a remote field study: Towards implicit and continuous user identification through body movements: Towards implicit and continuous user identification through body movements,” in 29th ACM Symposium on Virtual Reality Software and Technology, VRST 2023, (New York, NY, USA), Association for Computing Machinery, 2023.
  29. V. Nair, W. Guo, J. Mattern, R. Wang, J. F. O’Brien, L. Rosenberg, and D. Song, “Unique Identification of 50,000+ Virtual Reality Users from Head & Hand Motion Data,” Feb. 2023.
  30. L. Quintero, P. Papapetrou, J. Hollmen, and U. Fors, “Effective Classification of Head Motion Trajectories in Virtual Reality Using Time-Series Methods,” in 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 38–46, IEEE, Nov. 2021.
  31. A. G. Moore, R. P. McMahan, and N. Ruozzi, “Exploration of feature representations for predicting learning and retention outcomes in a vr training scenario,” Big Data and Cognitive Computing, vol. 5, no. 3, 2021.
  32. A. Bhalla, I. Sluganovic, K. Krawiecka, and I. Martinovic, “MoveAR: Continuous Biometric Authentication for Augmented Reality Headsets,” in CPSS 2021 - Proceedings of the 7th ACM Cyber-Physical System Security Workshop, (New York, NY, USA), pp. 41–52, Association for Computing Machinery, 2021.
  33. I. Olade, C. Fleming, and H. N. Liang, “Biomove: Biometric user identification from human kinesiological movements for virtual reality systems,” Sensors (Switzerland), vol. 20, no. 10, pp. 1–19, 2020.
  34. A. Ajit, N. K. Banerjee, and S. Banerjee, “Combining pairwise feature matches from device trajectories for biometric authentication in virtual reality environments,” in 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 9–16, IEEE, 2019.
  35. Y. Shen, H. Wen, C. Luo, W. Xu, T. Zhang, W. Hu, and D. Rus, “GaitLock: Protect Virtual and Augmented Reality Headsets Using Gait,” IEEE Transactions on Dependable and Secure Computing, vol. 16, no. 3, pp. 484–497, 2019.
  36. T. Mustafa, R. Matovu, A. Serwadda, and N. Muirhead, “Unsure how to authenticate on your VR headset? Come on, use your head!,” in IWSPA 2018 - Proceedings of the 4th ACM International Workshop on Security and Privacy Analytics, Co-located with CODASPY 2018, pp. 23–30, 2018.
  37. C. Rack, T. Fernando, M. Yalcin, A. Hotho, and M. E. Latoschik, “Who is Alyx? A new behavioral biometric dataset for user identification in XR,” Frontiers in Virtual Reality, vol. 4, 2023.
  38. S. Stephenson, B. Pal, S. Fan, E. Fernandes, Y. Zhao, and R. Chatterjee, “SoK: Authentication in Augmented and Virtual Reality,” in 2022 IEEE Symposium on Security and Privacy (SP), no. Section IV, pp. 267–284, IEEE, May 2022.
  39. K. Musgrave, S. Belongie, and S.-N. Lim, “A metric learning reality check,” in ECCV, pp. 681–699, Springer, 2020.
  40. M. Kaya and H. Ş. Bilge, “Deep metric learning: A survey,” Symmetry, vol. 11, no. 9, p. 1066, 2019.
  41. S. Kapoor and A. Narayanan, “Leakage and the Reproducibility Crisis in ML-based Science,” July 2022.
  42. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.
  43. J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.
  44. J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li, X. Xu, et al., “Milvus: A purpose-built vector data management system,” in Proceedings of the 2021 International Conference on Management of Data, pp. 2614–2627, 2021.
  45. Christian Rack, Lukas Schach, and Marc E. Latoschik, “Motion Learning Toolbox,” 2023.
  46. Springer US, 2011.
  47. R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality Reduction by Learning an Invariant Mapping,” in CVPR, vol. 2, pp. 1735–1742, June 2006.
  48. K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance Metric Learning for Large Margin Nearest Neighbor Classification,” in Advances in Neural Information Processing Systems 18 (Y. Weiss, B. Schölkopf, and J. C. Platt, eds.), pp. 1473–1480, MIT Press, 2006.
  49. X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning,” in CVPR, (Long Beach, CA, USA), pp. 5017–5025, IEEE, June 2019.
  50. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive Angular Margin Loss for Deep Face Recognition,” in CVPR, (Long Beach, CA, USA), pp. 4685–4694, IEEE, June 2019.
  51. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep Hypersphere Embedding for Face Recognition,” arXiv:1704.08063 [cs], Jan. 2018. arXiv: 1704.08063.
  52. F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, “NormFace: L2 Hypersphere Embedding for Face Verification,” ACM Multimedia, pp. 1041–1049, Oct. 2017. arXiv: 1704.06369.
  53. A. Zhai and H.-Y. Wu, “Classification is a Strong Baseline for Deep Metric Learning,” arXiv:1811.12649 [cs], Aug. 2019.
  54. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.
  55. L. Biewald, “Experiment tracking with weights and biases,” 2020. Software available from wandb.com.
  56. W. Falcon, J. Borovec, A. Wälchli, N. Eggert, J. Schock, J. Jordan, N. Skafte, Ir1dXD, V. Bereznyuk, E. Harris, T. Murrell, P. Yu, S. Præsius, T. Addair, J. Zhong, D. Lipin, S. Uchida, S. Bapat, H. Schröter, B. Dayma, A. Karnachev, A. Kulkarni, S. Komatsu, Martin.B, Jean-Baptiste SCHIRATTI, H. Mary, D. Byrne, C. Eyzaguirre, Cinjon, and A. Bakhtin, “PyTorchLightning/pytorch-lightning: 0.7.6 release.” Zenodo, May 2020.
  57. K. Musgrave, S. Belongie, and S.-N. Lim, “PyTorch Metric Learning,” Aug. 2020.
  58. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR (Poster), 2015.
  59. F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biometrics Bulletin, vol. 1, p. 80, Dec. 1945.
  60. F. Wilcoxon, “Individual Comparisons by Ranking Methods,” in Breakthroughs in Statistics (S. Kotz and N. L. Johnson, eds.), pp. 196–202, New York, NY: Springer New York, 1992.
  61. Z. Zhu, G. Huang, J. Deng, Y. Ye, J. Huang, X. Chen, J. Zhu, T. Yang, D. Du, J. Lu, et al., “Webface260m: A benchmark for million-scale deep face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  62. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat Models,” July 2023.
  63. A. Radford and K. Narasimhan, “Improving language understanding by generative pre-training,” 2018.
  64. V. Nair, L. Rosenberg, J. F. O’Brien, and D. Song, “Truth in Motion: The Unprecedented Risks and Opportunities of Extended Reality Motion Data,” 2023.
  65. G. Venture, H. Kadone, T. Zhang, J. Grèzes, A. Berthoz, and H. Hicheur, “Recognizing emotions conveyed by human gait,” International Journal of Social Robotics, vol. 6, pp. 621–632, 2014.
  66. V. Nair, C. Rack, W. Guo, R. Wang, S. Li, H. Brandon, A. I. Cull, J. F. O’Brien, M. E. Latoschik, L. Rosenberg, and D. Song, “Inferring Private Personal Attributes of Virtual Reality Users from Ecologically Valid Head and Hand Motion Data,” in 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Mar. 2024.
  67. V. C. Nair, G. Munilla-Garrido, and D. Song, “Going Incognito in the Metaverse: Achieving Theoretically Optimal Privacy-Usability Tradeoffs in VR,” in Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, (San Francisco CA USA), pp. 1–16, ACM, Oct. 2023.
  68. V. Nair, W. Guo, J. F. O’Brien, L. Rosenberg, and D. Song, “Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Virtual Reality Motion Data,” Nov. 2023.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube