Papers
Topics
Authors
Recent
2000 character limit reached

Fine-tuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition

Published 13 Feb 2023 in cs.CV | (2302.06308v2)

Abstract: In many machine learning tasks, a large general dataset and a small specialized dataset are available. In such situations, various domain adaptation methods can be used to adapt a general model to the target dataset. We show that in the case of neural networks trained for handwriting recognition using CTC, simple fine-tuning with data augmentation works surprisingly well in such scenarios and that it is resistant to overfitting even for very small target domain datasets. We evaluated the behavior of fine-tuning with respect to augmentation, training data size, and quality of the pre-trained network, both in writer-dependent and writer-independent settings. On a large real-world dataset, fine-tuning on new writers provided an average relative CER improvement of 25 % for 16 text lines and 50 % for 256 text lines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.