Nesterov acceleration despite very noisy gradients (2302.05515v3)
Abstract: We present a generalization of Nesterov's accelerated gradient descent algorithm. Our algorithm (AGNES) provably achieves acceleration for smooth convex and strongly convex minimization tasks with noisy gradient estimates if the noise intensity is proportional to the magnitude of the gradient at every point. Nesterov's method converges at an accelerated rate if the constant of proportionality is below 1, while AGNES accommodates any signal-to-noise ratio. The noise model is motivated by applications in overparametrized machine learning. AGNES requires only two parameters in convex and three in strongly convex minimization tasks, improving on existing methods. We further provide clear geometric interpretations and heuristics for the choice of parameters.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.