Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NEON+: Accelerated Gradient Methods for Extracting Negative Curvature for Non-Convex Optimization (1712.01033v2)

Published 4 Dec 2017 in math.OC and stat.ML

Abstract: Accelerated gradient (AG) methods are breakthroughs in convex optimization, improving the convergence rate of the gradient descent method for optimization with smooth functions. However, the analysis of AG methods for non-convex optimization is still limited. It remains an open question whether AG methods from convex optimization can accelerate the convergence of the gradient descent method for finding local minimum of non-convex optimization problems. This paper provides an affirmative answer to this question. In particular, we analyze two renowned variants of AG methods (namely Polyak's Heavy Ball method and Nesterov's Accelerated Gradient method) for extracting the negative curvature from random noise, which is central to escaping from saddle points. By leveraging the proposed AG methods for extracting the negative curvature, we present a new AG algorithm with double loops for non-convex optimization~\footnote{this is in contrast to a single-loop AG algorithm proposed in a recent manuscript~\citep{AGNON}, which directly analyzed the Nesterov's AG method for non-convex optimization and appeared online on November 29, 2017. However, we emphasize that our work is an independent work, which is inspired by our earlier work~\citep{NEON17} and is based on a different novel analysis.}, which converges to second-order stationary point $\x$ such that $|\nabla f(\x)|\leq \epsilon$ and $\nabla2 f(\x)\geq -\sqrt{\epsilon} I$ with $\widetilde O(1/\epsilon{1.75})$ iteration complexity, improving that of gradient descent method by a factor of $\epsilon{-0.25}$ and matching the best iteration complexity of second-order Hessian-free methods for non-convex optimization.

Citations (23)

Summary

We haven't generated a summary for this paper yet.