Papers
Topics
Authors
Recent
2000 character limit reached

Augmenting Zero-Shot Dense Retrievers with Plug-in Mixture-of-Memories (2302.03754v1)

Published 7 Feb 2023 in cs.CL

Abstract: In this paper we improve the zero-shot generalization ability of LLMs via Mixture-Of-Memory Augmentation (MoMA), a mechanism that retrieves augmentation documents from multiple information corpora ("external memories"), with the option to "plug in" new memory at inference time. We develop a joint learning mechanism that trains the augmentation component with latent labels derived from the end retrieval task, paired with hard negatives from the memory mixture. We instantiate the model in a zero-shot dense retrieval setting by augmenting a strong T5-based retriever with MoMA. Our model, MoMA, obtains strong zero-shot retrieval accuracy on the eighteen tasks included in the standard BEIR benchmark. It outperforms systems that seek generalization from increased model parameters and computation steps. Our analysis further illustrates the necessity of augmenting with mixture-of-memory for robust generalization, the benefits of augmentation learning, and how MoMA utilizes the plug-in memory at inference time without changing its parameters. We plan to open source our code.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.