Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Agree on Vision Attention for Visual Commonsense Reasoning (2302.02117v2)

Published 4 Feb 2023 in cs.CV

Abstract: Visual Commonsense Reasoning (VCR) remains a significant yet challenging research problem in the realm of visual reasoning. A VCR model generally aims at answering a textual question regarding an image, followed by the rationale prediction for the preceding answering process. Though these two processes are sequential and intertwined, existing methods always consider them as two independent matching-based instances. They, therefore, ignore the pivotal relationship between the two processes, leading to sub-optimal model performance. This paper presents a novel visual attention alignment method to efficaciously handle these two processes in a unified framework. To achieve this, we first design a re-attention module for aggregating the vision attention map produced in each process. Thereafter, the resultant two sets of attention maps are carefully aligned to guide the two processes to make decisions based on the same image regions. We apply this method to both conventional attention and the recent Transformer models and carry out extensive experiments on the VCR benchmark dataset. The results demonstrate that with the attention alignment module, our method achieves a considerable improvement over the baseline methods, evidently revealing the feasibility of the coupling of the two processes as well as the effectiveness of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zhenyang Li (28 papers)
  2. Yangyang Guo (45 papers)
  3. Kejie Wang (5 papers)
  4. Fan Liu (244 papers)
  5. Liqiang Nie (191 papers)
  6. Mohan Kankanhalli (117 papers)
Citations (6)