2000 character limit reached
    
  More on the first-order thermodynamics of scalar-tensor and Horndeski gravity (2302.01442v1)
    Published 2 Feb 2023 in gr-qc
  
  Abstract: Two issues in the first-order thermodynamics of scalar-tensor (including ``viable'' Horndeski) gravity are elucidated. The application of this new formalism to FLRW cosmology is shown to be fully legitimate and then extended to all Bianchi universes. It is shown that the formalism holds thanks to the almost miraculous fact that the constitutive relations of Eckart's thermodynamics are satisfied, while writing the field equations as effective Einstein equations with an effective dissipative fluid does not contain new physics.
- C. G. Callan, Jr., E. J. Martinec, M. J. Perry and D. Friedan, “Strings in Background Fields,” Nucl. Phys. B 262, 593-609 (1985), doi:10.1016/0550-3213(85)90506-1
 - E. S. Fradkin and A. A. Tseytlin, “Quantum String Theory Effective Action,” Nucl. Phys. B 261, 1-27 (1985) [erratum: Nucl. Phys. B 269, 745-745 (1986)]
 - S. Capozziello, “Curvature quintessence,” Int. J. Mod. Phys. D 11, 483-492 (2002) doi:10.1142/S0218271802002025 [arXiv:gr-qc/0201033 [gr-qc]]
 - S. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, “Is cosmic speed - up due to new gravitational physics?,” Phys. Rev. D 70, 043528 (2004) [arXiv:astro-ph/0306438 [astro-ph]].
 - T. P. Sotiriou and V. Faraoni, “f(R)𝑓𝑅f(R)italic_f ( italic_R ) Theories of Gravity,” Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726 [gr-qc]].
 - A. De Felice and S. Tsujikawa, “f(R)𝑓𝑅f(R)italic_f ( italic_R ) theories,” Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928 [gr-qc]].
 - S. Nojiri and S. D. Odintsov,“Unified cosmic history in modified gravity: from F(R)𝐹𝑅F(R)italic_F ( italic_R ) theory to Lorentz non-invariant models,” Phys. Rept. 505 (2011) 59 [arXiv:1011.0544 [gr-qc]].
 - G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10, 363-384 (1974) doi:10.1007/BF01807638
 - C. Deffayet, G. Esposito-Farèse and A. Vikman, “Covariant Galileon”, Phys. Rev. D 79, 084003 (2009) arXiv:0901.1314.
 - C. Deffayet, S. Deser and G. Esposito-Farése, “Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors”, Phys. Rev. D 80, 064015 (2009), arXiv:0906.1967.
 - C. Deffayet, X. Gao, D. A. Steer and G. Zahariade, “From k-essence to generalised Galileons”, Phys. Rev. D 84, 064039 (2011), arXiv:1103.3260.
 - J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, “Healthy theories beyond Horndeski”, Phys. Rev. Lett. 114, no. 21, 211101 (2015) arXiv:1404.6495.
 - J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, “Exploring gravitational theories beyond Horndeski”, JCAP 1502, 018 (2015) arXiv:1408.1952.
 - D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability”, JCAP 1602, no. 02, 034 (2016) arXiv:1510.06930.
 - D. Langlois and K. Noui, “Hamiltonian analysis of higher derivative scalar-tensor theories”, JCAP 1607, no. 07, 016 (2016) arXiv:1512.06820.
 - J. Ben Achour, D. Langlois and K. Noui, “Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations”, Phys. Rev. D 93, no. 12, 124005 (2016) arXiv:1602.08398.
 - M. Crisostomi, K. Koyama and G. Tasinato, “Extended Scalar-Tensor Theories of Gravity”, JCAP 1604, no. 04, 044 (2016) arXiv:1602.03119.
 - H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, “Healthy degenerate theories with higher derivatives”, JCAP 1607, no. 07, 033 (2016) arXiv:1603.09355.
 - J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, “Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order”, JHEP 1612, 100 (2016) arXiv:1608.08135.
 - M. Crisostomi, R. Klein and D. Roest, “Higher Derivative Field Theories: Degeneracy Conditions and Classes”, JHEP 1706, 124 (2017) arXiv:1703.01623.
 - D. Langlois, “Dark energy and modified gravity in degenerate higher-order scalar-tensor (DHOST) theories: A review”, Int. J. Mod. Phys. D 28, no. 05, 1942006 (2019) arXiv:1811.06271.
 - D. Langlois, “Degenerate Higher-Order Scalar-Tensor (DHOST) theories”, arXiv:1707.03625.
 - P. Creminelli, M. Lewandowski, G. Tambalo and F. Vernizzi, “Gravitational Wave Decay into Dark Energy”, JCAP 1812, no. 12, 025 (2018) arXiv:1809.03484.
 - D. Langlois, “Dark energy and modified gravity in degenerate higher-order scalar–tensor (DHOST) theories: A review”, Int. J. Mod. Phys. D 28, no.05, 1942006 (2019) doi:10.1142/S0218271819420069 [arXiv:1811.06271 [gr-qc]].
 - T. Kobayashi, M. Yamaguchi and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog. Theor. Phys. 126 (2011), 511-529, doi:10.1143/PTP.126.511 [arXiv:1105.5723 [hep-th]].
 - J. Noller and A. Nicola, “Cosmological parameter constraints for Horndeski scalar-tensor gravity,” Phys. Rev. D 99 (2019) no.10, 103502 [arXiv:1811.12928 [astro-ph.CO]].
 - N. Afshordi, M. Fontanini and D. C. Guariento, “Horndeski meets McVittie: A scalar field theory for accretion onto cosmological black holes,” Phys. Rev. D 90, no.8, 084012 (2014) doi:10.1103/PhysRevD.90.084012 [arXiv:1408.5538 [gr-qc]].
 - T. Kobayashi, “Generic instabilities of nonsingular cosmologies in Horndeski theory: A no-go theorem,” Phys. Rev. D 94, no.4, 043511 (2016) doi:10.1103/PhysRevD.94.043511 [arXiv:1606.05831 [hep-th]].
 - S. Akama and T. Kobayashi, “Generalized multi-Galileons, covariantized new terms, and the no-go theorem for nonsingular cosmologies,” Phys. Rev. D 95, no.6, 064011 (2017) doi:10.1103/PhysRevD.95.064011 [arXiv:1701.02926 [hep-th]].
 - P. Creminelli, D. Pirtskhalava, L. Santoni and E. Trincherini, “Stability of Geodesically Complete Cosmologies,” JCAP 11, 047 (2016) doi:10.1088/1475-7516/2016/11/047 [arXiv:1610.04207 [hep-th]].
 - S. Panpanich and K. i. Maeda, “Cosmological Dynamics of Cuscuta-Galileon Gravity,” [arXiv:2109.12288 [gr-qc]].
 - A. A. Starobinsky, S. V. Sushkov and M. S. Volkov, “Anisotropy screening in Horndeski cosmologies,” Phys. Rev. D 101, no.6, 064039 (2020) doi:10.1103/PhysRevD.101.064039 [arXiv:1912.12320 [hep-th]].
 - A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation”, Sov. Phys. Dokl., 12:1040–1041, 1968. [Gen. Rel. Grav. 32, 365 (2000)].
 - M. Visser, “Sakharov’s induced gravity: A Modern perspective,” Mod. Phys. Lett. A 17, 977-992 (2002) doi:10.1142/S0217732302006886 [arXiv:gr-qc/0204062 [gr-qc]].
 - T. Padmanabhan, “Emergent gravity and Dark Energy,” [arXiv:0802.1798 [gr-qc]].
 - T. Padmanabhan, “Thermodynamical Aspects of Gravity: New insights,” Rept. Prog. Phys. 73, 046901 (2010) doi:10.1088/0034-4885/73/4/046901 [arXiv:0911.5004 [gr-qc]].
 - B. L. Hu, “Emergent/Quantum Gravity: Macro/Micro Structures of Spacetime,” J. Phys. Conf. Ser. 174, 012015 (2009) doi:10.1088/1742-6596/174/1/012015 [arXiv:0903.0878 [gr-qc]].
 - E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton,” JHEP 04, 029 (2011) doi:10.1007/JHEP04(2011)029 [arXiv:1001.0785 [hep-th]].
 - S. Carlip, “Challenges for Emergent Gravity,” Stud. Hist. Phil. Sci. B 46, 200-208 (2014) doi:10.1016/j.shpsb.2012.11.002 [arXiv:1207.2504 [gr-qc]].
 - A. Giusti, “On the corpuscular theory of gravity,” Int. J. Geom. Meth. Mod. Phys. 16, no.03, 1930001 (2019) doi:10.1142/S0219887819300010
 - T. Jacobson, “Thermodynamics of space-time: The Einstein equation of state,” Phys. Rev. Lett. 75 (1995) 1260, doi:10.1103/PhysRevLett.75.1260 [arXiv:gr-qc/9504004 [gr-qc]].
 - C. Eling, R. Guedens, and T. Jacobson, “Non-equilibrium thermodynamics of spacetime,” Phys. Rev. Lett. 96 (2006) 121301, doi:10.1103/PhysRevLett.96.121301 [arXiv:gr-qc/0602001 [gr-qc]].
 - G. Chirco, C. Eling, and S. Liberati, “Reversible and Irreversible Spacetime Thermodynamics for General Brans-Dicke Theories,” Phys. Rev. D 83, 024032 (2011), doi:10.1103/PhysRevD.83.024032 [arXiv:1011.1405 [gr-qc]].
 - V. Faraoni and J. Côté, “Imperfect fluid description of modified gravities,” Phys. Rev. D 98 (2018) no. 8, 084019 doi:10.1103/PhysRevD.98.084019 [arXiv:1808.02427 [gr-qc]].
 - V. Faraoni and A. Giusti, “Thermodynamics of scalar-tensor gravity,” Phys. Rev. D 103, no.12, L121501 (2021) doi:10.1103/PhysRevD.103.L121501 [arXiv:2103.05389 [gr-qc]].
 - V. Faraoni, A. Giusti and A. Mentrelli, “New approach to the thermodynamics of scalar-tensor gravity,” Phys. Rev. D 104, no.12, 124031 (2021) doi:10.1103/PhysRevD.104.124031 [arXiv:2110.02368 [gr-qc]].
 - A. Giusti, S. Zentarra, L. Heisenberg and V. Faraoni, “First-order thermodynamics of Horndeski gravity,” Phys. Rev. D 105, no.12, 124011 (2022) doi:10.1103/PhysRevD.105.124011 [arXiv:2108.10706 [gr-qc]].
 - S. Giardino, V. Faraoni and A. Giusti, “First-order thermodynamics of scalar-tensor cosmology,” JCAP 04, no.04, 053 (2022) doi:10.1088/1475-7516/2022/04/053 [arXiv:2202.07393 [gr-qc]].
 - P. Jordan, “Zur empirischen kosmologie”, Naturwiss. 26, 417 (1938).
 - P. Jordan, “The present state of Dirac’s cosmological hypothesis,” Z. Phys. 157, 112-121 (1959) doi:10.1007/BF01375155
 - C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation”, Phys. Rev. 124, 925-935 (1961) doi:10.1103/PhysRev.124.925.
 - P. G. Bergmann, “Comments on the scalar tensor theory”, Int. J. Theor. Phys. 1, 25-36 (1968) doi:10.1007/BF00668828.
 - K. Nordtvedt, “Equivalence Principle for Massive Bodies. 2. Theory”, Phys. Rev. 169, 1017-1025 (1968). doi:10.1103/PhysRev.169.1017.
 - R. V. Wagoner, “Scalar tensor theory and gravitational waves”, Phys. Rev. D 1, 3209-3216 (1970) doi:10.1103/PhysRevD.1.3209.
 - K. Nordtvedt, Jr., “PostNewtonian metric for a general class of scalar tensor gravitational theories and observational consequences”, Astrophys. J. 161, 1059-1067 (1970) doi:10.1086/150607.
 - L. O. Pimentel, “Energy Momentum Tensor in the General Scalar-Tensor Theory,” Class. Quant. Grav. 6 (1989), L263-L265 doi:10.1088/0264-9381/6/12/005
 - U. Nucamendi, R. De Arcia, T. Gonzalez, F. A. Horta-Rangel and I. Quiros, “Equivalence between Horndeski and beyond Horndeski theories and imperfect fluids,” Phys. Rev. D 102 (2020) no.8, 084054, doi:10.1103/PhysRevD.102.084054 [arXiv:1910.13026 [gr-qc]].
 - C. Eckart, “The Thermodynamics of irreversible processes. 3. Relativistic theory of the simple fluid,” Phys. Rev. 58, 919-924 (1940), doi:10.1103/PhysRev.58.919
 - M.S. Madsen, “Scalar Fields in Curved Space-times,” Class. Quantum Grav. 5, 627 (1988), doi:10.1088/0264-9381/5/4/010
 - R. Maartens, “Causal thermodynamics in relativity,” [arXiv:astro-ph/9609119 [astro-ph]].
 - N. Andersson and G. L. Comer, “Relativistic fluid dynamics: Physics for many different scales,” Living Rev. Rel. 10, 1 (2007), doi:10.12942/lrr-2007-1 [arXiv:gr-qc/0605010 [gr-qc]].
 - V. Faraoni, A. Giusti, S. Jose and S. Giardino, “Peculiar thermal states in the first-order thermodynamics of gravity,” Phys. Rev. D 106, no.2, 024049 (2022) doi:10.1103/PhysRevD.106.024049 [arXiv:2206.02046 [gr-qc]].
 - V. Faraoni and T. B. Françonnet, “Stealth metastable state of scalar-tensor thermodynamics,” Phys. Rev. D 105, no.10, 104006 (2022) doi:10.1103/PhysRevD.105.104006 [arXiv:2203.14934 [gr-qc]].
 - V. Faraoni, P. A. Graham and A. Leblanc, “Critical solutions of nonminimally coupled scalar field theory and first-order thermodynamics of gravity,” [arXiv:2207.03841 [gr-qc]].
 - D. Langlois, R. Saito, D. Yamauchi and K. Noui, “Scalar-tensor theories and modified gravity in the wake of GW170817”, Phys. Rev. D 97, no. 6, 061501 (2018) arXiv:1711.07403.
 - V. Faraoni and G. Vachon, “Quasi-geodesics in relativistic gravity,” Eur. Phys. J. C 81, no.1, 22 (2021) doi:10.1140/epjc/s10052-020-08808-9 [arXiv:2011.05891 [gr-qc]].
 - R. L. Forward, “Roundtrip interstellar travel using laser-pushed light-sails”, J. Spacecraft Rockets 21, 187 (1984).
 - A. Füzfa, “Interstellar travels aboard radiation-powered rockets,” Phys. Rev. D 99, no.10, 104081 (2019) doi:10.1103/PhysRevD.99.104081 [arXiv:1902.03869 [gr-qc]].
 - A. Füzfa, W. Dhelonga-Biarufu and O. Welcomme, “Sailing Towards the Stars Close to the Speed of Light,” Phys. Rev. Res. 2, no.4, 043186 (2020) doi:10.1103/PhysRevResearch.2.043186 [arXiv:2007.03530 [physics.pop-ph]].
 - J. P. Mbelek, “Motion of a test body in the presence of an external scalar field which respects the weak equivalence principle,” Acta Cosmologica 24, 127-148 (1998) [arXiv:gr-qc/0402084 [gr-qc]].
 - J. P. Mbelek, “Modelling the rotational curves of spiral galaxies with a scalar field,” Astron. Astrophys. 424, 761-764 (2004) doi:10.1051/0004-6361:20040192 [arXiv:gr-qc/0411104 [gr-qc]].
 - T. Damour, G. W. Gibbons and C. Gundlach, “Dark Matter, Time Varying G𝐺Gitalic_G, and a Dilaton Field,” Phys. Rev. Lett. 64, 123-126 (1990) doi:10.1103/PhysRevLett.64.123
 - J. A. Casas, J. Garcia-Bellido and M. Quiros, “Scalar-tensor theories of gravity with phi dependent masses,” Class. Quant. Grav. 9, 1371-1384 (1992) doi:10.1088/0264-9381/9/5/018 [arXiv:hep-ph/9204213 [hep-ph]].
 - J. Garcia-Bellido, “Dark matter with variable masses,” Int. J. Mod. Phys. D 2, 85-95 (1993) doi:10.1142/S0218271893000076 [arXiv:hep-ph/9205216 [hep-ph]].
 - Y. B. Zeldovich, “Particle production in cosmology,” Pisma Zh. Eksp. Teor. Fiz. 12, 443-447 (1970).
 - B. L. Hu, “Vacuum viscosity description of quantum processes in the early universe”, Phys. Lett. 90A, 375 (1982).
 - W. Zimdahl, D. J. Schwarz, A. B. Balakin and D. Pavon, “Cosmic anti-friction and accelerated expansion,” Phys. Rev. D 64, 063501 (2001) doi:10.1103/PhysRevd.64.063501 [arXiv:astro-ph/0009353 [astro-ph]].
 - D. J. Schwarz, W. Zimdahl, A. B. Balakin and D. Pavon, “Cosmic acceleration from effective forces?,” doi:10.1007/10856495_84 [arXiv:astro-ph/0110296 [astro-ph]].
 - W. Zimdahl, J. Triginer and D. Pavon, “Collisional equilibrium, particle production and the inflationary universe,” Phys. Rev. D 54, 6101-6110 (1996) doi:10.1103/PhysRevD.54.6101 [arXiv:gr-qc/9608038 [gr-qc]].
 - W. Zimdahl, “Cosmological particle production and generalized thermodynamic equilibrium,” Phys. Rev. D 57, 2245-2254 (1998) doi:10.1103/PhysRevD.57.2245 [arXiv:gr-qc/9711081 [gr-qc]].
 - W. Zimdahl and A. B. Balakin, “Kinetic theory for nongeodesic particle motion: self-interacting equilibrium states and effective viscous fluid pressures”, Class. Quantum Grav. 15, 3259 (1998).
 - W. Zimdahl and A. B. Balakin, “Inflation in a selfinteracting gas universe,” Phys. Rev. D 58, 063503 (1998) doi:10.1103/PhysRevD.58.063503 [arXiv:astro-ph/9809002 [astro-ph]].
 - T. R. Taylor and G. Veneziano, “Dilaton Couplings at Large Distances,” Phys. Lett. B 213, 450-454 (1988) doi:10.1016/0370-2693(88)91290-7
 - T. Damour and A. M. Polyakov, “The String dilaton and a least coupling principle,” Nucl. Phys. B 423, 532-558 (1994) doi:10.1016/0550-3213(94)90143-0 [arXiv:hep-th/9401069 [hep-th]].
 - M. Gasperini, “On the response of gravitational antennas to dilatonic waves,” Phys. Lett. B 470, 67-72 (1999) doi:10.1016/S0370-2693(99)01309-X [arXiv:gr-qc/9910019 [gr-qc]].
 - M. Miranda, P. A. Graham and V. Faraoni, “Effective fluid mixture of tensor-multi-scalar gravity,” [arXiv:2211.03958 [gr-qc]].
 - A. Giusti, S. Giardino and V. Faraoni, “Past-directed scalar field gradients and scalar-tensor thermodynamics,” [arXiv:2210.15348 [gr-qc]].
 - G. F. R. Ellis and M. A. H. MacCallum, “A Class of homogeneous cosmological models,” Commun. Math. Phys. 12, 108-141 (1969) doi:10.1007/BF01645908
 - A. Pontzen and A. Challinor, “Bianchi Model CMB Polarization and its Implications for CMB Anomalies,” Mon. Not. Roy. Astron. Soc. 380, 1387-1398 (2007) doi:10.1111/j.1365-2966.2007.12221.x [arXiv:0706.2075 [astro-ph]].
 - C. Ganguly and J. Quintin, “Microphysical manifestations of viscosity and consequences for anisotropies in the very early universe,” Phys. Rev. D 105, no.2, 023532 (2022) doi:10.1103/PhysRevD.105.023532 [arXiv:2109.11701 [gr-qc]].
 - M. Miranda, D. Vernieri, S. Capozziello and V. Faraoni, “Fluid nature constrains Horndeski gravity,” [arXiv:2209.02727 [gr-qc]].
 - P. S. Apostolopoulos, “Vacuum self similar anisotropic cosmologies in F(R)−limit-from𝐹𝑅F(R)-italic_F ( italic_R ) -gravity,” Gen. Rel. Grav. 49, no.4, 59 (2017) doi:10.1007/s10714-017-2222-y [arXiv:1611.02013 [gr-qc]].
 
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.