Papers
Topics
Authors
Recent
2000 character limit reached

Hirzebruch-Milnor classes of hypersurfaces with nontrivial normal bundles and applications to higher du Bois and rational singularities (2302.00970v6)

Published 2 Feb 2023 in math.AG

Abstract: We extend the Hirzebruch-Milnor class of a hypersurface $X$ to the case where the normal bundle is nontrivial and $X$ cannot be defined by a global function, using the associated line bundle and the graded quotients of the monodromy filtration. The earlier definition requiring a global defining function of $X$ can be applied rarely to projective hypersurfaces with non-isolated singularities. Indeed, it is surprisingly difficult to get a one-parameter smoothing with total space smooth without destroying the singularities by blowing-ups (except certain quite special cases). As an application, assuming the singular locus is a projective variety, we show that the minimal exponent of a hypersurface can be captured by the spectral Hirzebruch-Milnor class, and higher du~Bois and rational singularities of a hypersurface are detectable by the unnormalized Hirzebruch-Milnor class. Here the unnormalized class can be replaced by the normalized one in the higher du~Bois case, but for the higher rational case, we must use also the decomposition of the Hirzebruch-Milnor class by the action of the semisimple part of the monodromy (which is equivalent to the spectral Hirzebruch-Milnor class). We cannot extend these arguments to the non-projective compact case by Hironaka's example.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.