Papers
Topics
Authors
Recent
2000 character limit reached

The higher Du Bois and higher rational properties for isolated singularities (2207.07566v4)

Published 15 Jul 2022 in math.AG

Abstract: Higher rational and higher Du Bois singularities have recently been introduced as natural generalizations of the standard definitions of rational and Du Bois singularities. In this note, we discuss these properties for isolated singularities, especially in the locally complete intersection (lci) case. First, we reprove the fact that a $k$-rational isolated singularity is $k$-Du Bois without any lci assumption. For isolated lci singularities, we give a complete characterization of the $k$-Du Bois and $k$-rational singularities in terms of standard invariants of singularities. In particular, we show that $k$-Du Bois singularities are $(k-1)$-rational for isolated lci singularities. In the course of the proof, we establish some new relations between invariants of isolated lci singularities and show that many of these vanish. The methods also lead to a quick proof of an inversion of adjunction theorem in the isolated lci case. Finally, we discuss some results specific to the hypersurface case.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.