Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning Functional Transduction (2302.00328v2)

Published 1 Feb 2023 in cs.LG and cs.NE

Abstract: Research in machine learning has polarized into two general approaches for regression tasks: Transductive methods construct estimates directly from available data but are usually problem unspecific. Inductive methods can be much more specific but generally require compute-intensive solution searches. In this work, we propose a hybrid approach and show that transductive regression principles can be meta-learned through gradient descent to form efficient in-context neural approximators by leveraging the theory of vector-valued Reproducing Kernel Banach Spaces (RKBS). We apply this approach to function spaces defined over finite and infinite-dimensional spaces (function-valued operators) and show that once trained, the Transducer can almost instantaneously capture an infinity of functional relationships given a few pairs of input and output examples and return new image estimates. We demonstrate the benefit of our meta-learned transductive approach to model complex physical systems influenced by varying external factors with little data at a fraction of the usual deep learning training computational cost for partial differential equations and climate modeling applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.