Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models (2301.13629v4)

Published 31 Jan 2023 in cs.LG

Abstract: Spatio-temporal graph neural networks (STGNN) have emerged as the dominant model for spatio-temporal graph (STG) forecasting. Despite their success, they fail to model intrinsic uncertainties within STG data, which cripples their practicality in downstream tasks for decision-making. To this end, this paper focuses on probabilistic STG forecasting, which is challenging due to the difficulty in modeling uncertainties and complex ST dependencies. In this study, we present the first attempt to generalize the popular denoising diffusion probabilistic models to STGs, leading to a novel non-autoregressive framework called DiffSTG, along with the first denoising network UGnet for STG in the framework. Our approach combines the spatio-temporal learning capabilities of STGNNs with the uncertainty measurements of diffusion models. Extensive experiments validate that DiffSTG reduces the Continuous Ranked Probability Score (CRPS) by 4%-14%, and Root Mean Squared Error (RMSE) by 2%-7% over existing methods on three real-world datasets.

Citations (55)

Summary

We haven't generated a summary for this paper yet.