Papers
Topics
Authors
Recent
2000 character limit reached

PROTES: Probabilistic Optimization with Tensor Sampling (2301.12162v2)

Published 28 Jan 2023 in math.NA and cs.NA

Abstract: We developed a new method PROTES for black-box optimization, which is based on the probabilistic sampling from a probability density function given in the low-parametric tensor train format. We tested it on complex multidimensional arrays and discretized multivariable functions taken, among others, from real-world applications, including unconstrained binary optimization and optimal control problems, for which the possible number of elements is up to $2{100}$. In numerical experiments, both on analytic model functions and on complex problems, PROTES outperforms existing popular discrete optimization methods (Particle Swarm Optimization, Covariance Matrix Adaptation, Differential Evolution, and others).

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.