Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Evolutionary Strategy For Black-Box Optimizations (2205.03056v4)

Published 6 May 2022 in cs.NE

Abstract: Many scientific and technological problems are related to optimization. Among them, black-box optimization in high-dimensional space is particularly challenging. Recent neural network-based black-box optimization studies have shown noteworthy achievements. However, their capability in high-dimensional search space is still limited. This study proposes a black-box optimization method based on the evolution strategy (ES) and the generative neural network (GNN) model. We designed the algorithm so that the ES and the GNN model work cooperatively. This hybrid model enables reliable training of surrogate networks; it optimizes multi-objective, high-dimensional, and stochastic black-box functions. Our method outperforms baseline optimization methods in this experiment, including ES, and Bayesian optimization.

Summary

We haven't generated a summary for this paper yet.