Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dance2MIDI: Dance-driven multi-instruments music generation (2301.09080v7)

Published 22 Jan 2023 in cs.MM, cs.SD, and eess.AS

Abstract: Dance-driven music generation aims to generate musical pieces conditioned on dance videos. Previous works focus on monophonic or raw audio generation, while the multi-instruments scenario is under-explored. The challenges associated with the dance-driven multi-instrument music (MIDI) generation are twofold: 1) no publicly available multi-instruments MIDI and video paired dataset and 2) the weak correlation between music and video. To tackle these challenges, we build the first multi-instruments MIDI and dance paired dataset (D2MIDI). Based on our proposed dataset, we introduce a multi-instruments MIDI generation framework (Dance2MIDI) conditioned on dance video. Specifically, 1) to capture the relationship between dance and music, we employ the Graph Convolutional Network to encode the dance motion. This allows us to extract features related to dance movement and dance style, 2) to generate a harmonious rhythm, we utilize a Transformer model to decode the drum track sequence, leveraging a cross-attention mechanism, and 3) we model the task of generating the remaining tracks based on the drum track as a sequence understanding and completion task. A BERT-like model is employed to comprehend the context of the entire music piece through self-supervised learning. We evaluate the generated music of our framework trained on the D2MIDI dataset and demonstrate that our method achieves State-of-the-Art performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.