Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

White-box Inference Attacks against Centralized Machine Learning and Federated Learning (2301.03595v1)

Published 15 Dec 2022 in cs.CR and cs.LG

Abstract: With the development of information science and technology, various industries have generated massive amounts of data, and machine learning is widely used in the analysis of big data. However, if the privacy of machine learning applications' customers cannot be guaranteed, it will cause security threats and losses to users' personal privacy information and service providers. Therefore, the issue of privacy protection of machine learning has received wide attention. For centralized machine learning models, we evaluate the impact of different neural network layers, gradient, gradient norm, and fine-tuned models on member inference attack performance with prior knowledge; For the federated learning model, we discuss the location of the attacker in the target model and its attack mode. The results show that the centralized machine learning model shows more serious member information leakage in all aspects, and the accuracy of the attacker in the central parameter server is significantly higher than the local Inference attacks as participants.

Summary

We haven't generated a summary for this paper yet.