Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RGB-T Multi-Modal Crowd Counting Based on Transformer (2301.03033v1)

Published 8 Jan 2023 in cs.CV

Abstract: Crowd counting aims to estimate the number of persons in a scene. Most state-of-the-art crowd counting methods based on color images can't work well in poor illumination conditions due to invisible objects. With the widespread use of infrared cameras, crowd counting based on color and thermal images is studied. Existing methods only achieve multi-modal fusion without count objective constraint. To better excavate multi-modal information, we use count-guided multi-modal fusion and modal-guided count enhancement to achieve the impressive performance. The proposed count-guided multi-modal fusion module utilizes a multi-scale token transformer to interact two-modal information under the guidance of count information and perceive different scales from the token perspective. The proposed modal-guided count enhancement module employs multi-scale deformable transformer decoder structure to enhance one modality feature and count information by the other modality. Experiment in public RGBT-CC dataset shows that our method refreshes the state-of-the-art results. https://github.com/liuzywen/RGBTCC

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub