Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum Bayesian Inference in Quasiprobability Representations (2301.01952v2)

Published 5 Jan 2023 in quant-ph

Abstract: Bayes' rule plays a crucial piece of logical inference in information and physical sciences alike. Its extension into the quantum regime has been the object of several recent works. These quantum versions of Bayes' rule have been expressed in the language of Hilbert spaces. In this paper, we derive the expression of the Petz recovery map within any quasiprobability representation, with explicit formulas for the two canonical choices of normal quasiprobability representations (which include Discrete Wigner representations) and of representations based on symmetric, informationally complete positive operator-valued measures (SIC-POVMs). By using the same mathematical syntax of (quasi-)stochastic matrices acting on (quasi-)stochastic vectors, the core difference in logical inference between classical and quantum theory is found in the manipulation of the reference prior rather than in the representation of the channel.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.