Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Solving The Ordinary Least Squares in Closed Form, Without Inversion or Normalization (2301.01854v2)

Published 4 Jan 2023 in stat.ME, stat.AP, and stat.CO

Abstract: By connecting the LU factorization and the Gram-Schmidt orthogonalization without any normalization, closed-forms for the coefficients of the ordinary least squares estimates are presented. Instead of using matrix inversion explicitly, each of the coefficients is expressed and computed directly as a linear combination of non-normalized Gram-Schmidt vectors and the original data matrix and also in terms of the upper triangular factor from LU factorization. The coefficients may computed iteratively using backward or forward algorithms given.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.