Papers
Topics
Authors
Recent
2000 character limit reached

Total Least Squares Regression in Input Sparsity Time

Published 27 Sep 2019 in cs.DS, cs.LG, and stat.ML | (1909.12441v1)

Abstract: In the total least squares problem, one is given an $m \times n$ matrix $A$, and an $m \times d$ matrix $B$, and one seeks to "correct" both $A$ and $B$, obtaining matrices $\hat{A}$ and $\hat{B}$, so that there exists an $X$ satisfying the equation $\hat{A}X = \hat{B}$. Typically the problem is overconstrained, meaning that $m \gg \max(n,d)$. The cost of the solution $\hat{A}, \hat{B}$ is given by $|A-\hat{A}|_F2 + |B - \hat{B}|_F2$. We give an algorithm for finding a solution $X$ to the linear system $\hat{A}X=\hat{B}$ for which the cost $|A-\hat{A}|_F2 + |B-\hat{B}|_F2$ is at most a multiplicative $(1+\epsilon)$ factor times the optimal cost, up to an additive error $\eta$ that may be an arbitrarily small function of $n$. Importantly, our running time is $\tilde{O}( \mathrm{nnz}(A) + \mathrm{nnz}(B) ) + \mathrm{poly}(n/\epsilon) \cdot d$, where for a matrix $C$, $\mathrm{nnz}(C)$ denotes its number of non-zero entries. Importantly, our running time does not directly depend on the large parameter $m$. As total least squares regression is known to be solvable via low rank approximation, a natural approach is to invoke fast algorithms for approximate low rank approximation, obtaining matrices $\hat{A}$ and $\hat{B}$ from this low rank approximation, and then solving for $X$ so that $\hat{A}X = \hat{B}$. However, existing algorithms do not apply since in total least squares the rank of the low rank approximation needs to be $n$, and so the running time of known methods would be at least $mn2$. In contrast, we are able to achieve a much faster running time for finding $X$ by never explicitly forming the equation $\hat{A} X = \hat{B}$, but instead solving for an $X$ which is a solution to an implicit such equation. Finally, we generalize our algorithm to the total least squares problem with regularization.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.