Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scene Synthesis from Human Motion (2301.01424v1)

Published 4 Jan 2023 in cs.GR and cs.CV

Abstract: Large-scale capture of human motion with diverse, complex scenes, while immensely useful, is often considered prohibitively costly. Meanwhile, human motion alone contains rich information about the scene they reside in and interact with. For example, a sitting human suggests the existence of a chair, and their leg position further implies the chair's pose. In this paper, we propose to synthesize diverse, semantically reasonable, and physically plausible scenes based on human motion. Our framework, Scene Synthesis from HUMan MotiON (SUMMON), includes two steps. It first uses ContactFormer, our newly introduced contact predictor, to obtain temporally consistent contact labels from human motion. Based on these predictions, SUMMON then chooses interacting objects and optimizes physical plausibility losses; it further populates the scene with objects that do not interact with humans. Experimental results demonstrate that SUMMON synthesizes feasible, plausible, and diverse scenes and has the potential to generate extensive human-scene interaction data for the community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Sifan Ye (2 papers)
  2. Yixing Wang (11 papers)
  3. Jiaman Li (17 papers)
  4. Dennis Park (9 papers)
  5. C. Karen Liu (93 papers)
  6. Huazhe Xu (93 papers)
  7. Jiajun Wu (249 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.