Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient Speech Representation Learning with Low-Bit Quantization (2301.00652v1)

Published 14 Dec 2022 in eess.AS and cs.CL

Abstract: With the development of hardware for machine learning, newer models often come at the cost of both increased sizes and computational complexity. In effort to improve the efficiency for these models, we apply and investigate recent quantization techniques on speech representation learning models. The quantization techniques were evaluated on the SUPERB benchmark. On the ASR task, with aggressive quantization to 1 bit, we achieved 86.32% storage reduction (184.42 -> 25.23), 88% estimated runtime reduction (1.00 -> 0.12) with increased word error rate (7.06 -> 15.96). In comparison with DistillHuBERT which also aims for model compression, the 2-bit configuration yielded slightly smaller storage (35.84 vs. 46.98), better word error rate (12.68 vs. 13.37) and more efficient estimated runtime (0.15 vs. 0.73).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.