Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Lightweight Graph Convolutional Networks with Phase-field Models (2212.09415v1)

Published 19 Dec 2022 in cs.CV

Abstract: In this paper, we design lightweight graph convolutional networks (GCNs) using a particular class of regularizers, dubbed as phase-field models (PFMs). PFMs exhibit a bi-phase behavior using a particular ultra-local term that allows training both the topology and the weight parameters of GCNs as a part of a single "end-to-end" optimization problem. Our proposed solution also relies on a reparametrization that pushes the mask of the topology towards binary values leading to effective topology selection and high generalization while implementing any targeted pruning rate. Both masks and weights share the same set of latent variables and this further enhances the generalization power of the resulting lightweight GCNs. Extensive experiments conducted on the challenging task of skeleton-based recognition show the outperformance of PFMs against other staple regularizers as well as related lightweight design methods.

Summary

We haven't generated a summary for this paper yet.